如图2-30,一个弹簧台秤的秤盘质量和弹簧质量都可以不计,盘内放一个物体P处于静止。P的质量为12kg,弹簧的劲度系数k=800N/m。现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速运动。已知在前0.2s内F是变化的,在0.2s以后F是恒力,则F最大值是多少?
F最大值即N=0时,F=ma+mg=210(N)
【分析解答】解题的关键是要理解0.2s前F是变力,0.2s后F的恒力的隐含条件。即在0.2s前物体受力和0.2s以后受力有较大的变化。
以物体P为研究对象。物体P静止时受重力G、称盘给的支持力N。
因为物体静止,∑F=0
N=G=0 ①
N=kx0 ②
设物体向上匀加速运动加速度为a。
此时物体P受力如图2-31受重力G,拉力F和支持力N′
据牛顿第二定律有
F+N′-G=ma ③
当0.2s后物体所受拉力F为恒力,即为P与盘脱离,即弹簧无形变,由0~0.2s内物体的位移为x0。物体由静止开始运动,则
将式①,②中解得的x0=0.15m代入式③解得a=7.5m/s2
F的最小值由式③可以看出即为N′最大时,即初始时刻N′=N=kx。
代入式③得
Fmin=ma+mg-kx0
=12×(7.5+10)-800×0.15
=90(N)
F最大值即N=0时,F=ma+mg=210(N)
科目:高中物理 来源: 题型:
查看答案和解析>>
科目:高中物理 来源: 题型:
查看答案和解析>>
科目:高中物理 来源: 题型:阅读理解
v |
查看答案和解析>>
科目:高中物理 来源:2012-2013学年四川省成都市高新区高三2月月考物理试卷(解析版) 题型:计算题
如图所示,在光滑的水平桌面内有一直角坐标系xOy,在y轴正半轴与边界直线MN间有一垂直于纸面向外磁感应强度为B的匀强磁场,直线MN平行于y轴,N点在x轴上,在磁场中放置一固定在短绝缘板,其上表面所在的直线过原点O且与x轴正方向成α=30°角,在y轴上的S点左侧正前方处,有一左端固定的绝缘轻质弹簧,弹簧的右端与一个质量为m,带电量为q的带电小球接触(但不栓接),弹簧处于压缩锁定状态,在某时刻解除锁定,带电小球将垂直于y轴从S点射入磁场,垂直打在绝缘板上,并以原速率反向弹回,然后经过直线MN上的P点并垂直于MN向右离开磁场,在x轴上有一点Q,已知NP=4L,NQ=3L,则:
(1)小球带何种电荷?小球从S进入磁场后经多长时间打在绝缘板上?
(2)弹簧解除锁定前的弹性势能是多少?
(3)如果在直线MN的右侧加一方向与桌面平行的匀强电场,小球在电场力的作用下最后在Q点垂直击中x轴,那么,该匀强电场的电场强度是多少?方向如何?
查看答案和解析>>
科目:高中物理 来源:2011年山东省高三第三次定时训练物理卷 题型:计算题
如图a所示是一个处于竖直平面内的特殊运动轨道,OA是长为x1=2R的直轨道,AE是倾角为30°的斜轨道,它们与滑块的动摩擦因数为,EDF是圆心在B点,半径为R的光滑圆弧,D点是最高点,ED圆弧上方有一个高度与滑块相近的光滑圆弧形挡板PQ,轨道上的A、E两点理想连接,使滑块经过这两点时不损失机械能,且AE⊥EB可视为质点的滑块,质量为m,以v0的初速度从O点进入OA直轨道,滑块在OA轨道运动时,受到水平向右的动力作用,它的大小随滑块与O点的距离变化,如图b所示,图中F0=mg滑块经A点滑上斜轨道,到达轨道最高点D时恰好对轨道和挡板都无压力,此时立刻撤除圆弧形挡板PQ滑块经D点后能无碰撞地进入一个特殊的漏斗C,漏斗C能将滑块以进入时的速率反向弹出,求:
1.滑块在D点时的速度大小;
2.初速度v0的大小;
3.滑块从漏斗C中弹出后会再次经过D点吗?若会经过D点,请求出经多长时间再次到达D点,漏斗离F点的x2多大?若不会经过D点,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com