精英家教网 > 高中物理 > 题目详情
19.如图(a)所示,水平放置的平行金属板AB间的距离d=0.1m,板长L=0.3m,在金属板的左端竖直放置一带有小孔的挡板,小孔恰好位于AB板的正中间,距金属板右端x=0.5m处竖直放置一足够大的荧光屏,现在AB板间加如图(b)所示的方波形电压,已知U0=1.0×102V,在挡板的左侧,有大量带正电的相同粒子以平行于金属板方向的速度持续射向挡板,粒子的质量m=1.0×10-7kg,电荷量q=1.0×10-2C,速度大小均为v0=1.0×104m/s,带电粒子的重力不计,则:

(1)求电子在电场中的运动时间;
(2)求在t=0时刻进入的粒子打在荧光屏上的位置到O点的距离;
(3)若撤去挡板,求荧光屏上出现的光带长度.

分析 (1)粒子进入电场后水平方向做匀速直线运动,由t=$\frac{L}{{v}_{0}}$,求出电子通过电场的时间.
(2)在t=0时刻进入的粒子,竖直方向上先作匀加速直线运动2×10-5s,再作匀减速直线运动1×10-5s,根据牛顿第二定律求得加速度,由速度公式v=at求出粒子射出电场时竖直方向的速度.由运动学位移时间公式求出粒子离开电场时偏转的竖直位移.粒子离开电场后做匀速直线运动,也运用运动的分解法求解偏转的竖直位移,即可得到粒子打在荧光屏上的位置到O点的距离;
(3)由b图可知,粒子在竖直方向加速和减速运动的时间之差等于交变电压的周期的$\frac{1}{3}$,由公式vy=at求解粒子离开电场时的竖直分速度.所有粒子飞出时的速度均相同,重点研究2×10-5s来打入的一个粒子,若其恰好能不碰下极板,即可由几何知识和运动学公式求解荧光屏上出现的光带长度.

解答 解:(1)粒子水平方向速度不变,作匀速直线运动,
在电场中运动时间为:t=$\frac{L}{{v}_{0}}$=$\frac{0.3}{1.0×1{0}^{4}}$s=3×10-5s,
(2)0时刻进入的粒子竖直方向上先作匀加速直线运动,用时t1=2×10-5s,再作匀减速直线运动,用时t2=1×10-5s,加速度大小相等,为:
  a=$\frac{q{U}_{0}}{md}$=$\frac{1×1{0}^{-2}×1×1{0}^{2}}{1×1{0}^{-7}×0.1}$m/s2=108m/s2
射出电场时,竖直分速度为:
    vy=at1-at2=108×(2×10-5-1×10-5)m/s=103m/s,
因为t1=2t2,可将整个运动时间分成三个t2,根据初速度为零的匀加速直线运动的推论可知,在三个t2内粒子竖直分位移分别为:y1=$\frac{1}{2}$at22,y2=3×$\frac{1}{2}$at22,y3=3×$\frac{1}{2}$at22,所以射出电场时,竖直分位移为:
    Y′=(1+3+3)•$\frac{1}{2}$at22=7×$\frac{1}{2}×1{0}^{8}×(1×1{0}^{-5})^{2}$m=0.035m
依据比例可得:Y=Y′+$\frac{{v}_{y}}{{v}_{0}}$x=0.035+0.05=0.085(m)
(3)粒子离开电场时竖直分速度为:vy=a(t-t),式中t为粒子在电场中运动时正向电压(上极板为U0)的持续时间.t为粒子在电场中运动时负向电压(下极板为U0)的持续时间,(t-t)恰好等于交变电压的周期的$\frac{1}{3}$,
故vy=a•$\frac{1}{3}$T=108m/s2×$\frac{1}{3}×3×1{0}^{-5}$m/s=1000m/s,
又所有粒子打入时的水平速度均为v0=1.0×104m/s,且水平方向作匀速直线运动,所以所有粒子离开电场时的速度均为v=$\sqrt{{v}_{0}^{2}+{v}_{y}^{2}}$=1000$\sqrt{101}$m/s,方向与水平成arccot10度角.可知粒子离开电场时的速度均相同.
研究2×10-5s来打入的一个粒子,若其恰好能不碰下极板(如图),所以光带长度为 l=d-$\frac{1}{2}$at22=0.095m
答:
(1)电子在电场中的运动时间为3×10-5s;
(2)在t=0时刻进入的粒子打在荧光屏上的位置到O点的距离为0.085m;
(3)荧光屏上出现的光带长度为0.095m.

点评 解决在偏转场中问题,通常由类平抛运动规律求解,要能熟练运用运动的合成与分解的方法研究,分析时要充分运用匀加速运动位移的比例关系和运动的对称性,来求解竖直分位移.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:计算题

9.一简谐横波沿x轴正向传播,t=0时刻的波形如图(a)所示,x=0.30m处的质点的振动图线如图(b)所示,该质点在t=0时刻的运动方向沿y轴正向(填“正向”或“负向”).已知该波的波长大于0.30m,则该波的波长为0.8m.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

10.如图(a)所示,真空室中电极K发出的电子(初速不计)经过U0=1000V的加速电场后,由小孔S沿两水平金属板A、B间的中心线射入,A、B板长l=0.20m,板间距离d=0.02m.加在A、B两板间的电压“随时间变化的u-t图线如图(b)所示.设A、B间的电场可看作是均匀的,且两板外无电场,在每个电子通过电场区域的极短时间内,电场可视作恒定的.两板右侧放一记录圆筒,筒的左侧边缘与极板右端距离b=0.15m,筒能接收到通过A、B板的全部电子,以t-0时(见图(b),此时u=0)电子打到圆筒记录纸上的点作为y坐标系的原点,并取y轴竖直向上.试计算

(1)电子能穿出偏转电场的偏转电压的最大值为多少?
(2)电子打到记录纸上的最高点的Y.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

7.一束初速度不计的电子在经U1的加速电压加速后,在距两极板等距处垂直进入平行板间的匀强电场,两极板间电压为U2,如图所示,若板间距离为d,板长为l,偏转电极边缘到荧光屏的距离为L,偏转电场只存在于该平行板之 间.已知电子质量为m,电荷量为e,假设电子能够打出平行金属板,求:
(1)电子离开加速电场时速度大小;
(2)电子离开偏转电场时竖直方向的位移;
(3)电子打到离荧光屏上中心O点多远处?

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

14.如图所示,带正电的粒子以一定的初速度v0沿两板的中线进入水平放置的平行金属板内,恰好沿下板的边缘飞出.已知板长为L,板间距离为d,板间电压为U,带电粒子的电荷量为q,粒子通过平行金属板的时间为t(不计粒子的重力),则(  )
A.在前$\frac{t}{2}$时间内,电场力对粒子做的功为$\frac{Uq}{4}$
B.在后$\frac{t}{2}$时间内,电场力对粒子做的功为$\frac{3Uq}{8}$
C.粒子的出射速度偏转角满足tan θ=$\frac{d}{L}$
D.粒子前$\frac{d}{4}$和后$\frac{d}{4}$的过程中,电场力冲量之比为$\sqrt{2}$:1

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

4.如图所示,绝缘光滑水平轨道AB的B端与处于竖直平面内的四分之一圆弧形粗糙绝缘轨道BC平滑连接,圆弧的半径R=0.40m.在轨道所在空间存在水平向右的匀强电场,电场强度E=1.0×104N/C.现有一质量m=0.10kg的带电体(可视为质点)放在水平轨道上与B端距离s=1.0m的位置,由于受到电场力的作用带电体由静止开始运动,当运动到圆弧形轨道的C端时,速度恰好为零.已知带电体所带电荷量q=8.0×10-5C.求:
(1)带电体运动到圆弧形轨道的B端时对圆弧轨道的压力;
(2)带电体沿圆弧形轨道从B端运动到C端的过程中,摩擦力做的功.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

11.如图所示的直角坐标系中,第一象限内分布着均匀辐射的电场.坐标原点与四分之一圆弧的荧光屏间电压为U;第三象限内分布着竖直向下的匀强电场,场强大小为E,大量电荷量为-q(q>0)、质量为m的粒子,某时刻起从第三象限不同位置连续以相同的初速度v0沿x轴正方向射入匀强电场,若粒子只能从坐标原点进入第一象限,其它粒子均被坐标轴上的物质吸收并导走并不影响原来的电场分布,不计粒子的重力及它们间的相互作用,下列说法正确的是(  )
A.能进入第一象限的粒子,在匀强电场中的初始位置分布在一条直线上
B.到达坐标原点的粒子速度越大,到达O点的速度方向与y轴的夹角θ越大
C.能打到荧光屏的粒子,进入O点的动能必须大于qU
D.若U<$\frac{m{{v}_{0}}^{2}}{2q}$,荧光屏各处均有粒子到达而被完全点亮

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

8.如图电路中,电池组的电动势E=42V,内阻r=2Ω,定值电阻R=20Ω,D是电动机,其线圈电阻R′=1Ω,电动机正常工作时,理想电压表示数为20V.求电动机正常工作时:
(1)通过电动机的电流;
(2)电动机的输出功率.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

9.下列说法中正确的是(  )
A.第4s末就是第5s初,指的是时刻B.第5s内指的是5s初,指的是时刻
C.出租车按位移的大小收费D.在直线运动中,位移就是路程

查看答案和解析>>

同步练习册答案