| A. | 物块刚与弹簧接触的瞬间达到最大动能 | |
| B. | μ<tanα | |
| C. | 弹簧的最大弹性势能等于整个过程中物块减少的重力势能与摩擦力对物块做功之和 | |
| D. | 若将物块从离弹簧上端2s的斜面上由静止释放,则下滑过程中物块的最大动能等于2Ekm |
分析 小物块从静止释放后能下滑,说明重力沿斜面向下的分力大于最大静摩擦力,由此列式得到μ与α的关系.物块所受的合力为零时动能最大.根据能量守恒定律分析各种能量的关系.
解答 解:A、物块刚与弹簧接触的瞬间,弹簧的弹力为零,仍有mgsinα>μmgcosα,物块继续向下加速,动能仍在增大,所以此瞬间动能不是最大,当物块的合力为零时动能才最大,故A错误.
B、小物块从静止释放后能下滑,则有 mgsinα>μmgcosα,解得 μ<tanα.故B正确.
C、根据能量转化和守恒定律知,弹簧的最大弹性势能等于整个过程中物块减少的重力势能与产生的内能之差,而内能等于物块克服摩擦力做功,可得弹簧的最大弹性势能等于整个过程中物块减少的重力势能与摩擦力对物块做功之和.故C正确.
D、若将物块从离弹簧上端2s的斜面处由静止释放,下滑过程中物块动能最大的位置不变,弹性势能不变,设为Ep.此位置弹簧的压缩量为x.
根据功能关系可得:
将物块从离弹簧上端s的斜面处由静止释放,下滑过程中物块的最大动能为 Ekm=mg(s+x)sinα-μmg(s+x)cosα-Ep.
将物块从离弹簧上端s的斜面处由静止释放,下滑过程中物块的最大动能为 Ekm′=mg•(2s+x)sinα-μmg•(2s+x)cosα-Ep.
而2Ekm=mg(2s+2x)sinα-μmg(2s+2x)cosα-2Ep.=[mg(2s+x)sinα-μmg(2s+x)cosα-Ep]+[mgxsinα-μmgxcosα-Ep]=Ekm′+[mgxsinα-μmgxcosα-Ep]
由于在物块接触弹簧到动能最大的过程中,物块的重力势能转化为内能和物块的动能,则根据功能关系可得:mgxsinα-μmgxcosα>Ep,即mgxsinα-μmgxcosα-Ep>0,所以得Ekm′<2Ekm.故D错误.
故选:BC
点评 本题主要考查了动能定理及能量守恒定律的直接应用,关键要能正确分析物体的运动情况,知道什么时候动能最大,能熟练运用能量守恒定律列式研究.
科目:高中物理 来源: 题型:多选题
| A. | 图中的a点为振动减弱点的位置 | |
| B. | 图中的b点为振动加强点的位置 | |
| C. | 从图中时刻开始,波源Sl的波峰传播到a、b位置的最短时间均为T1/2 | |
| D. | 波源S1的波经过干涉之后波的性质完全改变 |
查看答案和解析>>
科目:高中物理 来源: 题型:多选题
| A. | 汽车的最大速度为$\frac{P}{f}$ | |
| B. | 汽车的最大速度为$\frac{P}{mg}$ | |
| C. | 当汽车的速度为最大速度的$\frac{1}{2}$时,汽车的加速度大小为$\frac{f}{m}$ | |
| D. | 当汽车的速度为最大速度的$\frac{1}{3}$时,汽车的加速度大小为$\frac{f}{m}$ |
查看答案和解析>>
科目:高中物理 来源: 题型:选择题
| A. | 电源的电动势为1.0V | B. | 电源的内阻为2Ω | ||
| C. | 电源的短路电流为0.5A | D. | 电源的内阻为12Ω |
查看答案和解析>>
科目:高中物理 来源: 题型:选择题
| A. | 小球带正电 | |
| B. | 若电路中R3因故障发生断路,则灯L将变亮 | |
| C. | 当R3的滑片P向左滑动时,电源的输出功率减少 | |
| D. | 当R3的滑片P向左滑动时,电流计中有电流通过,方向由b到a |
查看答案和解析>>
科目:高中物理 来源: 题型:选择题
| A. | 环绕地球运行可以不在同一条轨道上 | |
| B. | 运行的角速度不一定都相同 | |
| C. | 运行速度大小可以不相等,但都小于7.9km/s | |
| D. | 向心加速度大于放在地球赤道上静止物体的向心加速度 |
查看答案和解析>>
科目:高中物理 来源: 题型:计算题
查看答案和解析>>
科目:高中物理 来源: 题型:实验题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com