解:(1)设B物体的质量为m,加速下滑时的加速度为a,其在斜面上时的受力情况如图所示,由牛顿第二定律得
mgsin37°-f=ma,f=μmgcos37°
解得a=g(sin37°-μcos37°)=2m/s
2.
设B物块释放后经过tsA追上B与其在斜面上相碰,由两者的位移关系得:
代入数据解得t=1.5s.
在1.5s内,B下滑的位移
A、B确实在斜面上发生碰撞.
(2)A碰前的速度v
A=a(t+1)=2×(1.5+1)m/s=5m/s,B碰前的速度v
B=at=2×1.5m/s=3m/s
由于碰撞时间极短,设碰后两者的共同速度为v,则mv
A+mv
B=2mv
代入数据解得v=4m/s.
AB相碰时距斜面底端的高度h=(s
2-s
B)sin37°=(3-2.25)×0.6m=0.45m
设AB滑行斜面后停止P点s
3远处,由动能定理得,
2mgh-μ2mg(s
2-s
B)cos37°
代入数据解得s
3=1.9m.
答:(1)B物块释放后经过1.5s两物块发生碰撞.
(2)AB最后停在距斜面底端P点1.9m.
分析:(1)根据牛顿第二定律求出物体下滑的加速度,两物体的加速度相同,根据运动学公式,抓住位移关系求出相碰的时间.
(2)分别求出A、B碰撞前的速度,根据动量守恒定律求出碰撞后瞬间的共同速度.求出碰撞后瞬间距离底端的高度,对结合体全程运用动能定理求出AB滑行斜面后停止点距离P点的距离.
点评:本题综合考查了牛顿第二定律、动能定理和动量守恒定律以及运动学公式,综合性较强,对学生的能力要求较高,需加强这方面的训练.