·ÖÎö £¨1£©¸ù¾Ý$v=\frac{d}{t}$£¬ÒòÕÚ¹âÆ¬¼ä¾àÒ»¶¨£¬Ôò¿É¸ù¾Ýʱ¼äС³µÊÇ·ñÔÈËÙÖ±ÏßÔ˶¯£»
£¨2£©Ó¦ÓÃËٶȹ«Ê½Çó³ö»¬¿éͨ¹ý¹âµçÃŵÄ˲ʱËÙ¶È£»
£¨3£©Ó¦Óö¯Äܶ¨ÀíÇó³öʵÑéÐèÒªÑéÖ¤µÄ±í´ïʽ£»
½â´ð ½â£º£¨1£©»¬¿éÔÈËÙÔ˶¯Ê±£¬ÕÚ¹âÆ¬¾¹ýÁ½¹âµçÃŵÄʱ¼äÏàµÈ£»
£¨2£©ÕÚ¹âÆ¬¿í¶ÈdºÜС£¬¿ÉÈÏΪÆäƽ¾ùËÙ¶ÈÓ뻬¿éͨ¹ý¸ÃλÖÃʱµÄ˲ʱËÙ¶ÈÏàµÈ£¬¹Ê»¬¿éͨ¹ý¼×¡¢ÒÒÁ½¹âµçÃÅʱµÄ˲ʱËÙ¶È·Ö±ðΪºÍ£»
${v}_{¼×}^{\;}=\frac{d}{{t}_{1}^{\;}}$£¬${v}_{ÒÒ}^{\;}=\frac{d}{{t}_{2}^{\;}}$
£¨3£©±È½ÏÍâÁ¦×ö¹¦mgx¼°ÏµÍ³¶¯ÄܵÄÔöÁ¿$\frac{1}{2}$£¨M+m£©$[£¨\frac{d}{{t}_{2}^{\;}}£©_{\;}^{2}-£¨\frac{d}{{t}_{1}^{\;}}£©_{\;}^{2}]$ÊÇ·ñÏàµÈ£¬¼´¿É̽¾¿¡°¶¯Äܶ¨Àí¡±£®
¹Ê´ð°¸Îª£º£¨1£©ÕÚ¹âÆ¬¾¹ýÁ½¹âµçÃŵÄʱ¼äÊÇ·ñÏàµÈ¡¡
£¨2£©$\frac{d}{{t}_{1}^{\;}}$ $\frac{d}{{t}_{2}^{\;}}$
£¨3£©mgx¡¡ $\frac{1}{2}$£¨M+m£©$[£¨\frac{d}{{t}_{2}^{\;}}£©_{\;}^{2}-£¨\frac{d}{{t}_{1}^{\;}}£©_{\;}^{2}]$
µãÆÀ ±¾Ì⿼²éÁË¡°Ì½¾¿ºÏÁ¦×ö¹¦ÓëËٶȱ仯µÄ¹ØÏµ¡±£¬Ã÷È·Á˸ÃʵÑéµÄʵÑéÔÀíÒÔ¼°ÊµÑéÄ¿µÄ£¬¼´¿ÉÁ˽â¾ßÌå²Ù×÷µÄº¬Ò壬ÒÔ¼°ÈçºÎ½øÐÐÊý¾Ý´¦Àí£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
| A£® | ¼Ó5Vµçѹʱ£¬µ¼ÌåµÄµç×èÊÇ0.2¦¸ | |
| B£® | ¼Ó12Vµçѹʱ£¬µ¼ÌåµÄµç×èÊÇ8¦¸ | |
| C£® | ÓÉͼ¿ÉÖª£¬Ëæ×ŵçѹµÄÔö´ó£¬µ¼ÌåµÄµç×è²»¶Ï¼õС | |
| D£® | ¸ÃÔª¼þΪ·ÇÏßÐÔÔª¼þ£¬ËùÒÔÅ·Ä·¶¨Âɲ»ÊÊÓà |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¼ÆËãÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÊµÑéÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
| A£® | Îï¿éÔÚAµãµÄµçÊÆÄÜEPA=Q¦Õ | |
| B£® | Îï¿éÔÚAµãʱÊܵ½¹ìµÀµÄÖ§³ÖÁ¦´óСΪmg+$\frac{3\sqrt{3}kqQ}{8{h}^{2}}$ | |
| C£® | µãµçºÉ+Q²úÉúµÄµç³¡ÔÚBµãµÄµç³¡Ç¿¶È´óСEB=K$\frac{q}{{h}^{2}}$ | |
| D£® | µãµçºÉ+Q²úÉúµÄµç³¡ÔÚBµãµÄµçÊÆ¦ÕB=$\frac{m}{2q}$£¨v02-v2£©+¦Õ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | E=2¦Ðk¦Ò£¨$\frac{{R}_{1}}{\sqrt{{x}^{2}+{R}_{1}^{2}}}$-$\frac{{R}_{2}}{\sqrt{{x}^{2}+{R}_{1}^{2}}}$£©x | B£® | E=2¦Ðk¦Ò£¨$\frac{1}{\sqrt{{x}^{2}+{R}_{1}^{2}}}$-$\frac{1}{\sqrt{{x}^{2}+{R}_{2}^{2}}}$£©x | ||
| C£® | E=2¦Ðk¦Ò£¨$\frac{{R}_{1}}{\sqrt{{x}^{2}+{R}_{1}^{2}}}$+$\frac{{R}_{2}}{\sqrt{{x}^{2}+{R}_{2}^{2}}}$£©x | D£® | E=2¦Ðk¦Ò£¨$\frac{1}{\sqrt{{x}^{2}+{R}_{1}^{2}}}$+$\frac{1}{\sqrt{{x}^{2}+{R}_{2}^{2}}}$£©x |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¼ÆËãÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÊµÑéÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º×÷ͼÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com