精英家教网 > 高中物理 > 题目详情
10.自耦变压器铁芯上只绕有一个线圈,原、副线圈都只取该线圈的某部分.一个理想自耦调压变压器的电路如图所示,变压器线圈总匝数为2000匝,原线圈为600匝,副线圈匝数可调;原线圈串联一个阻值为r=4Ω电阻接在有效值为220V的交流电源上,副线圈接阻值R=9Ω的负载.调节副线圈的匝数,当负载R上的功率最大时,副线圈的匝数为(  )
A.2000匝B.1350匝C.900匝D.400匝

分析 根据电流比得到原副线圈的电流关系,再根据功率公P=I2R求电阻上消耗的功率关系.

解答 解:由变压器两端的电压与匝数成正比,即$\frac{{U}_{1}}{{U}_{2}}=\frac{{n}_{1}}{{n}_{2}}$,
变压器的原线圈的电流与副线圈的电流关系:$\frac{{I}_{1}}{{I}_{2}}=\frac{{n}_{2}}{{n}_{1}}$
原线圈的输入电压:U1=U0-I1r=${U}_{0}-\frac{{n}_{2}}{{n}_{1}}•{I}_{2}r$
所以:U2=$\frac{{n}_{2}}{{n}_{1}}•{U}_{1}$
负载的电功率:${P}_{2}={I}_{2}^{2}R$
A、n2=2000匝时,$\frac{{I}_{1}}{{I}_{2}}=\frac{{n}_{2}}{{n}_{1}}=\frac{2000}{600}=\frac{10}{3}$,
则:$\frac{{U}_{1}}{{U}_{2}}=\frac{220-\frac{2000}{600}×4×{I}_{2}}{9{I}_{2}}$=$\frac{220}{9{I}_{2}}-\frac{40}{27}=\frac{600}{2000}$=$\frac{3}{10}$
解方程得:I2=1.78A
B、当n2=1350匝时,$\frac{{I}_{1}}{{I}_{2}}=\frac{{n}_{2}}{{n}_{1}}=\frac{1350}{600}=\frac{9}{4}$
$\frac{{U}_{1}}{{U}_{2}}=\frac{220-\frac{1350}{600}×4×{I}_{2}}{9{I}_{2}}$=$\frac{220}{9{I}_{2}}-1$=$\frac{4}{9}$
解方程得:I2=16.9A
C、当n2=900匝时,$\frac{{I}_{1}}{{I}_{2}}=\frac{{n}_{2}}{{n}_{1}}=\frac{900}{600}=\frac{3}{2}$
$\frac{{U}_{1}}{{U}_{2}}=\frac{220-\frac{900}{600}×4×{I}_{2}}{9{I}_{2}}$=$\frac{220}{9{I}_{2}}-\frac{2}{3}$=$\frac{2}{3}$A
解方程得:I2=18.3A
D、当n2=400匝时,$\frac{{I}_{1}}{{I}_{2}}=\frac{{n}_{2}}{{n}_{1}}=\frac{400}{600}=\frac{2}{3}$
则:$\frac{{U}_{1}}{{U}_{2}}=\frac{220-\frac{400}{600}×4×{I}_{2}}{9{I}_{2}}$=$\frac{220}{9{I}_{2}}-\frac{8}{27}$=$\frac{3}{2}$
解方程得:I2=13.6A
根据电功率的表达式:${P}_{2}={I}_{2}^{2}R$可知,当电流最大时,负载的电功率最大,所以当n2=900匝时负载的电功率最大,故C正确,ABD错误
故选:C

点评 该题属于变压器的应用,作为选择题,也可以将变压器的副线圈一侧作为由内电阻的电源,当电源内部消耗的电功率与外电路的电功率相等时,外电路消耗的电功率最大,由此结论列公式解答要简单许多.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:多选题

20.如图所示,一半径为R的半圆形区域里有垂直于圆而向外的匀强磁场,磁感应强度大小为B,在圆心O处有一粒子源,可以沿垂直于磁场的不同方向向磁场中射入质量为m、电荷量为q、速度大小均为$\frac{qBR}{m}$的带正电的粒子(粒子的重力不计),则(  )
A.粒子在磁场中运动的最长时间为$\frac{πm}{3qB}$
B.从半圆弧上射出的粒子在磁场中运动的时间相同
C.在半圆弧上各处都有粒子射出
D.磁场中粒子不能到达的区域面积为$\frac{1}{12}π{R}^{2}$

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

1.一个理想变压器,开始时开关S接1,此时原、副线圈的匝数比为9:1.一个理想二极管和一个滑动变阻器串联接在副线圈上,此时滑动变阻器接入电路的阻值为10Ω,如图1所示.原线圈接入如图2所示的正弦式交流电.则下列判断正确的是(  )
A.电压表的示数为4 V
B.滑动变阻器消耗的功率为0.8 W
C.若将开关S由1拨到2,同时滑动变阻器滑片向下滑动,电流表示数将变大
D.若将二极管用导线短接,电流表示数加倍

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

18.如图所示,模型交流发电机的矩形线圈abcd在匀强磁场中绕垂直于磁场的轴匀速转动,矩形线圈与原线圈可调节的理想变压器、灯泡、平行板电容器组成电路,当矩形线圈转动的角速度为ω时,发现灯泡较暗,不能正常发光,为了使灯泡能正常工作,下列措施可行的是(  )
A.将原线圈抽头P适当向上滑动
B.将电容器两板间的距离适当增大
C.适当增大磁场的磁感应强度或适当增大线圈转动的角速度
D.适当减小磁场的磁感应强度B,同时适当增大线圈的转动角速度ω,但Bω不变

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

5.如图所示,竖直光滑导轨上端接入一定值电阻R,C1和C2是半径都为a的两圆形磁场区域,其区域内的磁场方向都垂直于导轨平面向外,区域C1中磁场的磁感强度随时间按B1=b+kt(k>0)变化,C2中磁场的磁感强度恒为B2,一质量为m、电阻为r、长度为L的金属杆AB穿过区域C2的圆心C2垂直地跨放在两导轨上,且与导轨接触良好,并恰能保持静止.(轨道电阻不计,重力加速度大小为g.)则(  )
A.通过金属杆的电流方向为从A到B
B.通过金属杆的电流大小为$\frac{mg}{{2{B_2}a}}$
C.定值电阻的阻值为R=$\frac{{2kπ{B_2}{a^3}}}{mg}$
D.整个电路中产生的热功率P=$\frac{kπamg}{{2{B_2}}}$

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

15.如图所示,绝缘水平面内固定有一间距d=1m、电阻不计的足够长光滑矩形导轨AKDC,导轨两端接有阻值分别为R1=3Ω和R2=6Ω的定值电阻,矩形区域AKFE、NMCD范围内均有方向竖直向下、磁感应强度大小B=1T的匀强磁场Ⅰ和Ⅱ,一质量m=0.2kg、电阻r=1Ω的导体棒ab垂直放在导轨上AK与EF之间某处,在方向水平向右、大小F0=2N的恒力作用下由静止开始运动,刚要到达EF时导体棒ab的速度大小v1=3m/s,导体棒ab进入磁场Ⅱ后,导体棒ab中通过的电流始终保持不变,导体棒ab在运动过程中始终保持与导轨垂直且接触良好,空气阻力不计.
(1)求导体棒ab刚要到达EF时的加速度大小a1
(2)求两磁场边界EF和MN之间的距离L;
(3)若在导体棒ab刚要到达MN时将恒力F0撤去,求导体棒ab能继续滑行的距离s以及滑行该距离s的过程中整个回路产生的焦耳热Q.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

2.如图所示为著名的“阿特伍德机”装置示意图.跨过轻质定滑轮的轻绳两端悬挂两个质量质量均为M的物块,当左侧物块附上质量为m的小物块时,该物块由静止开始加速下落,下落h后小物块撞击挡板自动脱离,系统以v匀速运动.忽略系统一切阻力,重力加速度为g,若测出v,则可完成多个力学实验.下列关于此实验的说法,正确的是(  )
A.系统放上小物块后,轻绳的张力增加了mg
B.可测得当地重力加速度g=$\frac{(2M+m){v}^{2}}{2mh}$
C.要验证机械能守恒,需验证等式mgh=$\frac{1}{2}$(2M+m)v2
D.要探究合外力与加速度的关系,需探究mg=(M+m)$\frac{{v}^{2}}{2h}$是否成立

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

19.如图所示,竖直杆AB用细线悬挂在水平面上一定高度处,杆长为L,水深也为L,太阳光照在杆子上,太阳光线与水平面的夹角为37°,杆子底端B离水平面的高度h=$\frac{L}{3}$.已知水的折射率n=$\frac{4}{3}$,sin37°=0.6,cos37°=0.8,求:
(1)竖直杆在水底形成的影子的长.
(2)影子的中心到AB杆的水平距离.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

3.如图所示,在光滑水平桌面上有一质量为M=2kg的小车,小车跟绳一端相连,绳子另一端通过滑轮吊一个质量为m=0.5kg的物体,开始绳处于伸直状态,物体从距地面h=1m处由静止释放,物体落地之前绳的拉力为4N;当物体着地的瞬间(小车未离开桌子)小车的速度大小为2m/s.(g=10m/s2 )

查看答案和解析>>

同步练习册答案