精英家教网 > 高中物理 > 题目详情

【题目】如图所示,当开关S断开时,用光子能量为2.5 eV的一束光照 阴极P,发现电流表读数不为零.合上开关,调节滑动变阻器,发现当电压表读数小于0.60 V时,电流表读数仍不为零;当电压表读数大于或等于0.60 V时,电流表读数为零.

(1)求此时光电子的最大初动能的大小;

(2)求该阴极材料的逸出功.

【答案】(1) (2)

【解析】设用光子能量为2.5 eV的光照射阴极P,光电子的最大初动能为Ek,阴极材料逸出功为W0,当反向电压达到U=0.60V以后,具有最大初动能的光电子也达不到阳极,因此eU=Ek,光电效应方程:Ek=hν-W0

由以上两式解得Ek=0.6 eV,W0=1.9eV

所以此时最大初动能为0.6 eV,该阴极材料的逸出功为1.9eV

练习册系列答案
相关习题

科目:高中物理 来源: 题型:

【题目】如图所示,一质量为m的物体在沿斜面向上的恒力F作用下,由静止从底端向上做匀加速直线运动若斜面足够长,表面光滑,倾角为θ经时间t恒力F做功80J,此后撤去恒力F,物体又经时间t回到出发点,且回到出发点时的速度大小为v,若以地面为重力势能的零势能面,则下列说法中正确的是

A物体回到出发点时的机械能是80 J

B在撤去力F前的瞬间,力F的功率是mgvsinθ

C撤去力F前的运动过程中,物体的重力势能一直在增加,撤去力F后的运动过程中物体的重力势能先增加再减少

D撤去力F前的运动过程中,物体的动能一直在增加,撤去力F后的运动过程中物体的动能一直在减少

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图所示,质量为M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒力F=5N,当小车向右运动的速度达到1.5m/s时,在小车最右端轻轻地放上一个大小不计的质量为m=2kg的小物块,物块与小车的动摩擦因素是0.2,小车足够长,求从小物块放上小车经过1.5m,小物块相对于地的位移是多少?(g=10m/s2

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图所示,平行金属板MN之间有竖直向下的匀强电场,虚线下方有垂直纸面的匀强磁场,质子和粒子分别从上板中心S点由静止开始运动,经电场加速后从0点垂直磁场边界进入匀强磁场,最后从ab两点射出磁场(不计重力),下列说法正确的是

A. 磁场方向垂直纸面向外

B. a点离开的是粒子

C. b点离开的粒子在磁场中运动的速率较大

D. 粒子从S出发到离开磁场,由b点离开的粒子所用时间较长

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图所示,质量为m的小物块在粗糙水平桌面上做直线运动,经距离l后以速度v飞离桌面,最终落在水平地面上.已知l1.4 mv3.0 m/sm0.10 kg,物块与桌面间的动摩擦因数μ0.25,桌面高h0.45 m.不计空气阻力,重力加速度g10 m/s2.求:

(1)小物块落地点距飞出点的水平距离x

(2)小物块落地时的动能Ek

(3)小物块的初速度大小v0.

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图所示,一个有界匀强磁场区域,磁场方向垂直纸面向外.一个矩形闭合导线框abcd,沿纸面由位置1(左)匀速运动到位置2(右).则g( )

A. 导线框进入磁场时,感应电流方向为a→b→c→d→a

B. 导线框离开磁场时,感应电流方向为a→d→c→b→a

C. 导线框离开磁场时,受到的安培力方向水平向左

D. 导线框进入磁场时,受到的安培力方向水平向右

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】矩形导线框abcd放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t变化的图象如图所示。设t=0时刻,磁感应强度的方向垂直纸面向里,则在0~4 s时间内,选项图中能正确反映线框ab边所受的安培力F随时间t变化的图象是(规定ab边所受的安培力向左为正)(  )

A. B.

C. D.

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图所示,相距为d的两条水平虚线之间是方向垂直纸面向里的匀强磁场,磁感应强度为B,正方形线圈abcd边长为L(L<d),质量为m、电阻为R,将线圈在磁场上方h高处由静止释放,cd边刚进入磁场时速度为v0,cd边刚离开磁场时速度也为v0,则线圈穿过磁场的过程中(从cd边刚进入磁场起一直到ab边离开磁场为止):( )

A.线圈可能是加速进入磁场的

B.感应电流所做的功为2mgd

C.可能小于

D.线圈的最小速度一定是

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】1932年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中运动特点,解决了粒子的加速问题。现在回旋加速器被广泛应用于科学研究和医学设备中。回旋加速器的工作原理如图甲所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直,加速器接一定频率的高频交流电源,保证粒子每次经过电场都被加速,加速电压为U。A处粒子源产生的粒子,质量为m、电荷量为q,初速度不计,在加速器中被加速,加速过程中不考虑相对论效应和重力作用。

(1)求第1次被加速后粒子的速度大小为v;

(2)经多次加速后,粒子最终从出口处射出D形盒,求粒子射出时的动能和在回旋加速器中运动的总时间t;

(3)近年来,大中型粒子加速器往往采用多种加速器的串接组合。例如由直线加速器做为预加速器,获得中间能量,再注入回旋加速器获得最终能量。个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图乙所示(图中只画出了六个圆筒,作为示意)。各筒相间地连接到频率为、最大电压值为的正弦交流电源的两端。整个装置放在高真空容器中。圆筒的两底面中心开有小孔。现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间的缝隙的时间可以不计。已知离子进入第一个圆筒左端的速度为,且此时第一、二两个圆筒间的电势差。为使打到靶上的离子获得最大能量 ,各个圆筒的最小长度应满足什么条件?并求出在这种情况下打到靶上的离子的能量。

查看答案和解析>>

同步练习册答案