精英家教网 > 高中物理 > 题目详情
如图所示,光滑水平地面上停着一辆平板车,其质量为2m,长为L,车右端(A点)有一块静止的质量为m的小金属块.金属块与车间有摩擦,以中点C为界,AC段与CB段动摩擦因数不同.现给车施加一个向右的水平恒力,使车向右运动,同时金属块在车上开始滑动,当金属块滑到中点C时,即撤去这个力.已知撤去力的瞬间,金属块的速度为v0,车的速度为2v0,最后金属块恰停在车的左端(B点).
求:(1)F的大小为多少?
(2)AC段与CB段动摩擦因数μ1与μ2的比值.
分析:(1)分别以平板车与小金属块为研究对象,进行受力分析,由牛顿第二定律求出加速度,由动能定理求出位移,找出平板车与金属块位移间的关系,然后求出拉力.
(2)由动量守恒定律求出金属块与小车的共同速度,然后由能量守恒定律求出动摩擦因数.
解答:解:(1)设水平拉力为F,力的作用时间为t1
对金属块,由牛顿第二定律可得:a1=
μ1mg
m
1g,
由匀变速直线运动的速度公式可知,v0=a1t1,则t1=
v0
μ1g

对小车,由牛顿第二定律可得:a2=
(F-μ1mg)
2m

由匀变速直线运动的速度公式可知:
2v0=a2t1=
(F-μ1mg)
2m
×
v0
μ1g
,则F=5μ1mg  ①;
在A→C过程中,由动能定理得:
对金属块:μ1mgs1=
1
2
mv02 ②,
对小车:(F-μ1mg)s2=
1
2
2m(2v02 ③,
由几何关系可知:s2-s1=
L
2
    ④,
由①②③④解得:μ1=
v
2
0
gL
,F=
5m
v
2
0
L

(2)从小金属块滑至车中点C开始到小金属块停在车的左端的过程中,
系统外力为零,动量守恒,设共同速度为v,由2m×2v0+mv0=(2m+m)v,得v=
5
3
v0
由能量守恒得:μ2mg
L
2
=
1
2
mv02+
1
2
×2m×(2v02 -
1
2
×3m×(
5
3
v02
解得:μ2=
2
v
2
0
3gL
μ1
μ2
=
3
2

答:(1)F的大小为
5m
v
2
0
L
;(2)AC段与CB段动摩擦因数μ1与μ2的比值是3:2.
点评:本题难度较大,是一道难题,分析清楚物体的运动过程是正确解题的关键;要注意各过程中正确利用物理规律.
练习册系列答案
相关习题

科目:高中物理 来源: 题型:

两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为mA=2.0kg,mB=0.90kg,它们的下底面光滑,上表面粗糙,另有一质量mC=0.10kg的滑块C(可视为质点),以VC=10m/s的速度恰好水平地滑A的上表面,如图所示,由于摩擦,滑块最后停在木块B上,B和C的共同速度为0.50m/s

木块A的最终速度VA

滑块C离开A时的速度VC

查看答案和解析>>

科目:高中物理 来源: 题型:

如图所示,在竖直方向上AB两物体通过劲度系数为k的轻质弹簧相连,A放在水

平地面上,BC两物体通过细绳绕过轻质定滑轮相连,C放在固定的足够长光滑斜面上。

用手按住C,使细线恰好伸直但没有拉力,并保证ab段的细线竖直、cd段的细线与斜面

平行。已知AB的质量均为mC的质量为M),细线与滑轮之间的摩擦不计,

开始时整个系统处于静止状态。释放C后它沿斜面下滑,当A恰好要离开地面时,B获得

最大速度(B未触及滑轮,弹簧始终处于弹性限度内,重力加速度大小为g)。求:

(1)释放物体C之前弹簧的压缩量;

(2)物体B的最大速度秒m;

(3)若C与斜面的动摩擦因数为,从释放物体C开始到物体A恰好要离开地面时,细线对物体C所做的功。

查看答案和解析>>

同步练习册答案