精英家教网 > 高中物理 > 题目详情
10.如图所示,相距为d的两条水平虚线L1、L2之间是方向水平向里的匀强磁场,磁感应强度为B,正方形线圈abcd边长为L(L<d),质量为m、电阻为R,将线圈在磁场上方h高处静止释放,cd边刚进入磁场时速度为v0,cd边刚离开磁场时速度也为v0,则线圈穿过磁场的过程中(从cd边刚进入磁场一直到ab边离开磁场为止):(  )
A.感应电流所做的功为2mgd
B.线圈的最小速度可能为$\frac{mgR}{{B}^{2}{L}^{2}}$
C.线圈的最小速度一定是$\sqrt{2g(h+L-d)}$
D.线圈穿出磁场的过程中,感应电流为逆时针方向

分析 线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时刻的速度是相同的,又因为线圈全部进入磁场不受安培力,要做匀加速运动,线圈进入磁场先要做减速运动,结合能量守恒,抓住进磁场和出磁场产生的热量相同,求出感应电流做功的大小.线圈完全进入磁场时的速度最小,结合能量守恒求出最小速度.根据楞次定律求出线圈出磁场过程中感应电流的方向.

解答 解:A、据能量守恒,研究从cd边刚进入磁场到cd边刚穿出磁场的过程:动能变化量为0,重力势能转化为线框进入磁场的过程中产生的热量,Q=mgd.
cd边刚进入磁场时速度为v0,cd边刚离开磁场时速度也为v0,所以从cd边刚穿出磁场到ab边离开磁场的过程,线框产生的热量与从cd边刚进入磁场到ab边刚进入磁场的过程产生的热量相等,所以线圈从cd边进入磁场到ab边离开磁场的过程,产生的热量Q′=2mgd,感应电流做的功为2mgd,故A正确.
B、线框可能进入磁场先做减速运动,在完全进入磁场前已做匀速运动,刚完全进入磁场时的速度最小,有:mg=$\frac{{B}^{2}{L}^{2}v}{R}$,解得可能的最小速度v=$\frac{mgR}{{B}^{2}{L}^{2}}$,故B正确.
C、因为进磁场时要减速,线圈全部进入磁场后做匀加速运动,则知线圈刚全部进入磁场的瞬间速度最小,线圈从开始下落到线圈刚完全进入磁场的过程,根据能量守恒定律得:mg(h+L)=Q+$\frac{1}{2}m{v}^{2}$,解得最小速度v=$\sqrt{2g(h+L-d)}$,故C正确.
D、线圈穿出磁场的过程,由楞次定律知,感应电流的方向为顺时针,故D错误.
故选:ABC.

点评 解决本题的关键根据根据线圈下边缘刚进入磁场和刚穿出磁场时刻的速度都是v0,且全部进入磁场将做加速运动,判断出线圈进磁场后先做变减速运动,也得出全部进磁场时的速度是穿越磁场过程中的最小速度.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:多选题

18.在物理学的发展过程中,许多物理学家提出的理论和假设推动了人类历史的进步.下列表述符合物理学史实的是(  )
A.汤姆孙通过研究阴极射线实验,发现了电子并建立了原子的“枣糕”模型
B.巴尔末根据氢原子光谱分析,总结出了氢原子光谱可见光区波长公式
C.贝克勒尔通过对天然放射性的研究,发现原子核是由质子和中子组成的
D.玻尔大胆提出假设,认为实物粒子也具有波动性

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

1.如图所示,两光滑金属导轨,间距d=0.4cm,在桌面上的部分是水平的,金属棒ab左侧到桌子左边处在磁感应强度B=0.5T、方向竖直向下的有界磁场中,ab距桌子左边的水平距离L=1m,电阻R=1Ω,桌面高H=0.8m,金属杆ab的质量m=0.2kg,电阻r=1Ω,在距桌面h=0.4m高的四分之一光滑圆弧导轨处由静止释放,落地点距桌面左边缘的水平距离s=0.4m,g=10m/s2,求:
(1)金属杆刚出磁场时,R上的电流大小;
(2)整个过程中R上产生的热量;
(3)整个过程中流过R上产生的电荷量.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

18.如图所示,足够长水平固定平行导轨间距L=0.5m,现有相距一定距离的两根导体棒ab和cd静止放置在导轨上,两棒质量均为m=1kg,电阻分别为Rab=0.3Ω,Rcd=0.1Ω,整个装置处在磁感应强度B=1T方向竖直向上的匀强磁场中,现给ab棒一水平向右的初速度v0=2m/s,以后ab和cd两棒运动过程中与导轨始终保持良好接触且和导轨始终垂直,导轨电阻忽略不计,不计一切摩擦,两导体棒在运动过程中始终不接触,试求从ab棒运动至最终达到稳定状态的过程中:
(1)最终稳定状态时两棒的各自速度分别为多少?
(2)从ab棒开始运动至最终达到稳定状态的过程中,ab棒上产生的焦耳热Q是多少?
(3)要使两棒在运动过程中始终不接触,则初始时刻两棒之间的距离d至少多大?

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

5.如图所示,MSNO为同一根导线制成的光滑导线框,竖直放置在水平方向的匀强磁场中,OC为一可绕O轴始终在轨道上滑动的导体棒,当OC从M点无初速度释放后,下列说法中正确的是(  )
A.由于无摩擦存在,导体棒OC可以在轨道上往复运动下去
B.导体棒OC的摆动幅度越来越小,机械能转化为电能
C.导体棒OC在摆动中总受到阻碍它运动的磁场力
D.导体棒OC只有在摆动加快时才受到阻碍它运动的磁场力

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

15.如图所示,光滑矩形斜面ABCD的倾角θ=30°,在其上放置一矩形金属框abcd,ab的边长l1=1m,bc的边长l2=0.6m,线框的质量m=1kg,电阻R=0.1Ω,线框通过细线绕过定滑轮与重物相连,细线与斜面平行且靠近,重物质量M=2kg,离地面高度为H=4.8m,斜面上efgh区域是有界匀强磁场,磁感应强度的大小为0.5T,方向垂直于斜面向上;已知AB到ef的距离为4.2m,ef到gh的距离为0.6m,gh到CD的距离为3.8m,取g=10m/s2,现让线框从静止开始运动(开始时刻,cd与AB边重合),求:
(1)线框进入磁场前的加速度大小;
(2)线框的ab边刚进入磁场时的速度v0的大小;
(3)线框从静止运动开始到ab边与CD边重合时,线框运动的时间t;
(4)线框abcd在整个运动过程中产生的热量.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

2.如图,光滑绝缘的水平面上一个倒放的“曰”字型导线框,四周abfe为正方形,每边长度为l,中间的导线cd距离右侧边ab的距离为$\frac{2}{3}$l.上下横边ae、bf不计电阻,每条竖直边ab、cd、ef的电阻都是R.虚线右侧存在着竖直向下的匀强磁场,磁感应强度为B,磁场边界与导线框的竖边平行.现在让导线框以速度v0匀速垂直进入磁场区域.忽略一切阻力.试分析:

(1)导线框匀速进入磁场过程中所需外力的情况,并计算所需外力的大小和方向;
(2)线框匀速进入过程中电路中产生的焦耳热Q
(3)分析、计算线框匀速进入磁场过程中ef边消耗的电功率多大.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

19.关于天然放射现象,以下说法正确的是(  )
A.若使放射性物质的温度升高,其半衰期将变大
B.β衰变所释放的电子是原子核内的质子转变为中子时产生的
C.在α、β、γ,这三种射线中,α射线的穿透能力最强
D.铀核(${\;}_{92}^{238}$U)衰变为铅核(${\;}_{82}^{206}$Pb)的过程中,要经过8次α衰变和6次β衰变

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

20.如图所示,是一种传动装置,A、B、C三点对应的半径各不同,则角速度ωB等于ωC; 线速度VA等于VB;VB小于VC(填“大于”、“等于”、“小于”)

查看答案和解析>>

同步练习册答案