精英家教网 > 高中物理 > 题目详情
10.如图甲所示,MNCD为一足够长的光滑绝缘斜面,EFGH范围内存在方向垂直斜面向下的匀强磁场,磁场边界EF、HG与斜面底边MN(在水平面内)平行.一正方形金属框abcd放在斜面上,ab边平行于磁场边界.现使金属框从斜面上某处由静止释放,金属框从开始运动到cd边离开磁场的过程中,其运动的v-t图象如图乙所示.已知金属框电阻为R,质量为m,重力加速度为g,图乙中金属框运动的各个时刻及对应的速度均为已知量,求:

(1)磁场区域的宽度d;
(2)金属框穿过磁场过程中产生的焦耳热Q

分析 (1)磁场区域的宽度d等于金属框ab边在t1至3t1时间内运动位移的大小,根据v-t图象的面积求解.
(2)由速度图象读出加速度,由牛顿第二定律求出斜面倾角的正弦值.线框从t1时刻进入磁场到t2时刻离开磁场,金属框穿过磁场过程中机械能减小转化为内能,根据能量守恒定律求出焦耳热.

解答 解:(1)根据金属框运动的v-t图象可知,金属框ab边在t1时刻开始进入磁场区域,在t1至2t1时间内金属框做速度大小为v1的匀速直线运动,金属框cd边在2t1时刻开始进入磁场区域,在2t1至3t1时间内金属框做匀加速直线运动,在3t1时刻,金属框ab边离开磁场区域.
则磁场区域的宽度d等于金属框ab边在t1至3t1时间内运动位移的大小,根据v-t图象得:
$d={v_1}{t_1}+\frac{{({{v_1}+2{v_1}})({3{t_1}-2{t_1}})}}{2}$…①
解得:$d=\frac{{5{v_1}{t_1}}}{2}$…②
(2)设光滑绝缘斜面的倾角为θ,正方形金属框的边长为l,在金属框ab边从t1时刻进入磁场到金属框cd边从t2时刻离开磁场的过程中,由功能关系得:$mg(d+l)sinθ=\frac{1}{2}m{v_2}^2-\frac{1}{2}m{v_1}^2+Q$…③
根据金属框运动的v-t图象可知,金属框ab边在t1时刻开始进入磁场区域,在t1至2t1时间内金属框做速度大小为v1的匀速直线运动,则有:
l=v1t1…④
根据v-t图象可知,在0至t1时间内金属框做初速度为零的匀加速直线运动,又根据牛顿第二定律得:
$mgsinθ=ma=m\frac{v_1}{t_1}$…⑤
由①~⑤解得:Q=$4m{v}_{1}^{2}-\frac{1}{2}m{v}_{2}^{2}$…⑥
答:(1)磁场区域的宽度d是$\frac{5{v}_{1}{t}_{1}}{2}$;
(2)金属框穿过磁场过程中产生的焦耳热Q是$4m{v}_{1}^{2}-\frac{1}{2}m{v}_{2}^{2}$.

点评 本题除了考查电磁感应知识外,着重考查对速度图象的识别、理解能力,要充分挖掘图象的信息,如“面积”“斜率”等表示的意义.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

10.用三根轻绳将质量为2m的物块悬挂在空中,如图所示,已知ac和bc与竖直方向的夹角分别为30°和60°,则ac绳和bc绳的拉力分别为(  )
A.A、$\sqrt{3}$mg,mgB.mg,$\sqrt{3}$mgC.$\frac{\sqrt{3}}{2}$mg,$\frac{1}{2}$mgD.$\frac{1}{2}$mg,$\frac{\sqrt{3}}{2}$mg

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

1.如图甲所示,导体棒MN置于水平导轨上,PQMN所围的面积为S,PQ之间有阻值为R的电阻,不计导轨和导体棒的电阻.导轨所在区域内存在沿竖直方向的匀强磁场,规定磁场方向竖直向上为正,在0~2t0时间内磁感应强度的变化情况如图乙所示,导体棒MN始终处于静止状态.下列说法正确的是(  )
A.在0~t0和t0~2t0时间内,导体棒中电流方向相同
B.在0~t0和t0~2t0时间内,导体棒受到的摩擦力方向相同
C.在t0~2t0内,通过电阻R的电流大小为$\frac{S{B}_{0}}{R{t}_{0}}$
D.在0~2t0时间内,通过电阻R的电荷量为$\frac{3{B}_{0}S}{R}$

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

18.如图所示,竖直平面内有一半径为r、电阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与距离为2r、电阻不计的平行光滑金属导轨ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R.在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B.现有质量为m、电阻不计的导体棒ab从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,设平行导轨足够长.已知导体棒下落0.5r时的速度大小为v1,下落到MN处时的速度大小为v2.不计空气阻力,重力加速度为g.
(1)求导体棒ab从A处下落0.5r时的加速度大小;
(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II这间的距离h和R2上的电功率P2
(3)若将磁场II的CD边界略微下移,导体棒ab进入磁场II时的速度大小为v3,要使其在外力F作用下做匀加速直线运动,加速度大小为a,求所加外力F随时间变化的关系式.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

5.关于波长的说法中正确的是(  )
A.一个周期内,振动在介质中传播的距离等于一个波长
B.一个周期内,介质中的质点通过的路程等于一个波长
C.波长等于在波的传播方向上振动相位总是相同的两个质点间的距离
D.波长等于波峰与波谷间距离的2倍

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

15.如图所示,虚线框内为某种电磁缓冲车的结构示意图,其主要部件为缓冲滑块 K和质量为m的缓冲车厢.在缓冲车的底板上,沿车的轴线固定着两个光滑水平绝缘导轨PQ、MN.缓冲车的底部,安装电磁铁(图中未画出),能产生垂直于导轨平面的匀强磁场,磁场的磁感应强度为B.导轨内的缓冲滑块K由高强度绝缘材料制成,滑块K上绕有闭合矩形线圈abcd,线圈的总电阻为R,匝数为n,ab边长为L.假设缓冲车以速度v0与障碍物C碰撞后,滑块K立即停下,此后线圈与轨道的磁场作用力使缓冲车厢减速运动,从而实现缓冲,一切摩擦阻力不计.

(1)求滑块K的线圈中最大感应电动势的大小;
(2)若缓冲车厢向前移动距离L后速度为零,则此过程线圈abcd中通过的电量和产生的焦耳热各是多少?
(3)若缓冲车以某一速度v0′(未知)与障碍物C碰撞后,滑块K立即停下,缓冲车厢所受的最大水平磁场力为Fm.缓冲车在滑块K停下后,其速度v随位移x的变化规律满足:v=v0′-$\frac{{n}^{2}{B}^{2}{L}^{2}}{mR}$.要使导轨右端不碰到障碍物,则缓冲车与障碍物C碰撞前,导轨右端与滑块K的cd边距离至少多大?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

2.如图甲所示,水平面上固定一直角斜面,一质量为2kg、可看作质点的物块在沿斜面AB 向上的外力F作用下从A点由静止出发,沿斜面AB向上运动,到最高点B(有一小段光滑圆弧)时撤去外力,物块沿BC面下滑,最后静止于水平面上的D点(物块在C处无能量损失),已知斜面AB光滑,斜面BC及水平面粗糙,物块与粗糙面间的动摩擦因数均为μ,物块整个运动过程的v-t图象如图乙所示,重力加速度g取10m/s2,求:

(1)动摩擦因数μ的值;
(2)外力F的大小;
(3)斜面BC的长度.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

19.在半径为R=1.6×l06m某星球上,宇航员在离星球水平表面lm高处,以3m/s的初速度抛出一个物体,物体落地时速度大小为5m/s,不计空气阻力和不考虑星球自转的影响.求:
(1)该星球表面的重力加速度大小;
(2)若宇航员乘坐的宇宙飞船在离该星球表面高度为H=3R处绕该星球做匀速圆周运动,求飞船的速率(可用根式表示).

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

20.日光灯电路主要由灯管,镇流器和启动器组成,以下叙述正确的是(  )
A.灯管点燃发光后,启动器中两触片是分离的
B.镇流器起整流作用
C.灯管点燃发光后,镇流器起降压限流作用
D.镇流器给日光灯开始点燃时提供瞬时高压

查看答案和解析>>

同步练习册答案