精英家教网 > 高中物理 > 题目详情
18.如图甲所示,空间分布着有理想边界的匀强电场和匀强磁场.匀强磁场分为Ⅰ、Ⅱ两个区域,其边界为MN、PQ,磁感应强度大小均为B,方向如图所示,Ⅰ区域高度为d,Ⅱ区域的高度足够大.一个质量为m、电量为q的带正电的小球从磁场上方的O点由静止开始下落,进入电、磁复合场后,恰能做匀速圆周运动.

(1)求电场强度E的大小;
(2)若带电小球运动一定时间后恰能回到O点,求带电小球释放时距MN的高度h;
(3)若带电小球从距MN的高度为3h的O′点由静止开始下落,为使带电小球运动一定时间后仍能回到O′点,需将磁场Ⅱ向下移动一定距离(如图乙所示),求磁场Ⅱ向下移动的距离y及小球从O′点释放到第一次回到O′点的运动时间T.

分析 (1)带电小球恰能做匀速圆周运动,则小球所受重力与电场力相等,由此可以求出电场强度.
(2)小求组在混合场中做匀速圆周运动,速率不变,只有小球从进入磁场的位置离开磁场,然后做竖直上抛运动,才有可能回到出发点,由动能定理、牛顿第二定律可以求出释放点的高度.
(3)作出粒子的运动轨迹,作用动能定理、牛顿第二定律、运动学公式,分别求出各阶段的运动时间,然后求出粒子运动的总时间.

解答 解:(1)小球做匀速圆周运动,则mg=qE,电场强度为:E=$\frac{mg}{q}$;
(2)小球从进入磁场的位置离开磁场,才可能回到出发点,小球运动轨迹如图所示;由几何知识得:轨道半径为:R=$\frac{2\sqrt{3}}{3}$d,
小球下落过程中,由动能定理得:mgh=$\frac{1}{2}$mv2-0,
由牛顿第二定律得:qvB=m$\frac{{v}^{2}}{R}$,
解得:h=$\frac{2{d}^{2}{q}^{2}{B}^{2}}{3g{m}^{2}}$;
(3)当带电小球从距MN距离为3h处由静止下落时:
运动轨迹如图所示,由几何知识可得:R1=2d,
由动能定理得:mg•3h=$\overline{12}$mv12-0,
由牛顿第二定律得:qv1B=m$\frac{{v}_{1}^{2}}{{R}_{1}}$,
粒子在中间运动运动过程中,粒子速度方向与竖直方向成30度角,由几何知识可得:
y=(6-2$\sqrt{3}$)d,
粒子自由落体与竖直上升的总时间为:t1=2$\sqrt{\frac{2×3h}{g}}$=4$\frac{dqB}{mg}$,
粒子做圆周运动的时间为:t2=$\frac{5πm}{3qB}$,
粒子做运动运动的总时间为:t3=2$\frac{2(4\sqrt{3}-4)d}{{v}_{1}}$,
一个来回的总时间为:T=t1+t2+t3=$\frac{4dqB}{mg}$+$\frac{5πm}{3qB}$+$\frac{4(\sqrt{3}-1)m}{qB}$;
答:(1)电场强度为$\frac{mg}{q}$;
(2)小球释放时距MN的高度为$\frac{2{d}^{2}{q}^{2}{B}^{2}}{3g{m}^{2}}$;
(3)磁场Ⅱ向下移动的距离y为:(6-2$\sqrt{3}$)d,带电粒子的运动时间为$\frac{4dqB}{mg}$+$\frac{5πm}{3qB}$+$\frac{4(\sqrt{3}-1)m}{qB}$.

点评 本题是一道难题,分析清楚粒子的运动过程、作出粒子运动轨迹,熟练应用动能定律、牛顿第二定律、数学知识即可正确解题.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

8.质量为m的汽车,在平直公路上从静止开始加速行驶,发动机功率保持额定功率.经历时间t,行驶距离s后,汽车刚好达到最大速度vm.设汽车所受阻力大小不变,求该汽车的额定功率P和汽车所受的阻力大小f.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

9.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1m,导轨平面与水平面成θ=37°角,下端连接阻值为R的电阻.匀强磁场方向与导轨平面垂直向上.质量为0.2kg,电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.
(1)求金属棒沿导轨由静止开始下滑时的加速度大小;
(2)当金属棒下滑速度达到稳定时,电阻R上每秒钟产生8J的热量,求该速度的大小;
(3)在上问中,若R=2Ω,求磁感应强度的大小.
(g=10m/s2,sin37°=0.6,cos37°=0.8)

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

6.氧化锡是一种对气体中酒精含量敏感的材料:当周围气体中酒精浓度发生变化时,其阻值也会发生变化.小明为研究某型号氧化锡检测电阻咫的阻值随气体中酒精浓度变化的关系,采用图1所示实验装置进行实验:在可以直接测得酒精浓度的容器中喷入雾状酒精,闭合电路,调节滑动变阻器的阻值至适当值,读出电压表和电流表的示数,改变喷入雾状酒精的量,重复上述实验,计算出风的值.即可得到凡的阻值随气体中酒精浓度变化的关系图线.

(1)每次实验之前,小明都应先将滑动变阻器R的滑动片置于b端(选填“a”或“b”):
(2)小明在实验中测得多组数据如表所示:
实验次数12345678
气体中酒精浓度(mg/L)0.0l0.020.040.060.070.090.120.15
电压表示数(V)2.002.402.201.601.401.201.000.86
电流表示数(A)0.100.150.200.200.200.200.200.20
凡的阻值(Ω)20118754.3
请在图2所示的坐标系中描绘出凡的阻值随气体中酒精浓度变化的关系图线;
(3)我国《道路交通安全法》规定:严禁酒后驾车!参照《车辆驾驶人员呼气酒精含量阈值与检验标准(GBl9522)》,呼气中酒精浓度大于等于0.09mg/L就属于酒后驾车.小明用该型号氧化锡检测电阻R制成一个简易的酒驾测试仪.给定下列器材和要求,请你在图3中帮他连接实物图;
器材:电源(E=6V,r=2Ω)、开关S、氧化锡检测电阻Rx、定值电阻R0、理想电压表、导线.
要求:闭合开关S,检测者呼出气体流经Rx.若电压表读数大于等于1.2V,则检测者属于酒后驾车若电压表读数小于1.2V,则不属于酒后驾车.
(4)在(3)问中,定值电阻R0的阻值应为22Ω.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

13.如图所示,理想变压器原线圈匝数n1=3110匝,副线圈匝数n2=311匝,原线圈电压u=311sin100πtV,负载电阻R=44Ω,不计电表对电路的影响,下列说法正确的是(  )
A.V2读数为31.1V
B.A1读数为0.05A
C.变压器副线圈两端交变电流的频率为50Hz
D.变压器副线圈中磁通量变化率最大值为0.1wb/s

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

3.如图为某种鱼饵自动投放器中的投饵管装置示意图,其下半部AB是一长为2R的竖直细管,上半部BC是半径为R的四分之一圆弧弯管,管口沿水平方向,AB管内有一原长为R、下端固定的轻质弹簧.投饵时,每次总将弹簧长度压缩到0.5R后锁定,在弹簧上段放置一粒鱼饵,解除锁定,弹簧可将鱼饵弹射出去.设质量为m的鱼饵到达管口C时,对管壁的作用力恰好为零.不计鱼饵在运动过程中的机械能损失,且锁定和解除锁定时,均不改变弹簧的弹性势能.已知重力加速度为g.求:
(1)质量为m的鱼饵到达管口C时的速度大小v1
(2)弹簧压缩到0.5R时的弹性势能Ep
(3)求鱼饵刚落水面时的速度.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

10.如图1,用“碰撞实验器“可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系.

①实验中,直接测定小球碰撞前后的速度是不容易的.但是,可以通过仅测量C(填选项前的符号),间接地解决这个问题.
A.小球开始释放高度h
B.小球抛出点距地面的高度H
C.小球做平抛运动的射程
②图2中O点是小球抛出点在地面上的垂直投影.实验时,先让入射球ml多次从斜轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP.
然后,把被碰小球m2静置于轨道的水平部分,再将入射球m1从斜轨上S位置静止释放,与小球m2相碰,并多次重复.接下来要完成的必要步骤是ADE.(填选项前的符号)
A.用天平测量两个小球的质量ml、m2B.测量小球m1开始释放高度h   C.测量抛出点距地面的高度H
D.分别找到m1、m2相碰后平均落地点的位置M、N       E.测量平抛射程OM,ON
③若两球相碰前后的动量守恒,其表达式可表示为m1•OM+m2•ON=m1OP (用②中测量的量表示);若碰撞是弹性碰撞,那么还应满足的表达式为${m_1}•O{M^2}+{m_2}•O{N^2}={m_1}O{P^2}$ (用②中测量的量表示).
④经测定,m1=45.0g,m2=7.5g,小球落地点的平均位置距O点的距离如图2所示.碰撞前、后m1的动量分别为p1与p1′,则p1:p1′=14:11;若碰撞结束时m2的动量为p2′,则p1′:p2′=11:2.9.
实验结果表明,碰撞前、后总动量的比值$\frac{p_1}{{{p_1}^′+{p_2}^′}}$为1.01.
⑤有同学认为,在上述实验中仅更换两个小球的材质,其它条件不变,可以使被碰小球做平抛运动的射程增大.请你用④中已知的数据,分析和计算出被碰小球m2平抛运动射程ON的最大值为76.8cm.

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

7.如图所示,在点电荷Q形成的电场中有A、B、C三点,若Q为负电荷,则A点电势最低,将正电荷放在C点时电势能最大,将负电荷放在A点时电势能最大.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

8.在检测某款电动车性能的某次实验中,质量为8×102㎏的电动车由静止开始沿平直公路行驶,达到的最大速度为15m/s,利用传感器测得此过程中不同时刻电动车的牵引力F与对应的速度v,并描绘出F-$\frac{1}{v}$图象(图中AB、BO均为直线).假设电动车行驶中所受的阻力恒定,求:
(1)根据图线ABC,判断该环保电动车做什么运动并计算环保电动车的额定功率;
(2)此过程中环保电动车做匀加速直线运动的加速度的大小;
(3)环保电动车由静止开始运动,经过多长时间速度达到2m/s?

查看答案和解析>>

同步练习册答案