12£®ÈçͼËùʾ£¬Çã½ÇΪ¦ÈµÄ¹â»¬Ð±Ãæµ×¶Ë¹Ì¶¨Ò»µ¯ÐÔµ²°åP£¬½«Ð¡»¬¿éAºÍB´ÓÐ±ÃæÉϾ൲°åP·Ö±ðΪlºÍ3lµÄλÖÃͬʱÓɾ²Ö¹ÊÍ·Å£¬AÓëµ²°åÅöײºóÒÔÔ­ËÙÂÊ·µ»Ø£»AÓëBµÄÅöײʱ¼ä¼«¶ÌÇÒÎÞ»úеÄÜËðʧ£®ÒÑÖªAµÄÖÊÁ¿Îª3m¡¢BµÄÖÊÁ¿Îªm£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£¬»¬¿éÅöײǰºóÔÚÒ»ÌõÖ±ÏßÉÏÔ˶¯£¬ºöÂÔ¿ÕÆø×èÁ¦¼°Åöײʱ¼ä£¬½«»¬¿éÊÓΪÖʵ㣬Çó£º
£¨1£©Á½»¬¿éµÚÒ»´ÎÏàÅöµÄλÖã»
£¨2£©Á½»¬¿éµÚÒ»´ÎÏàÅöºó£¬BÓëµ²°åµÄ×îÔ¶¾àÀ룮

·ÖÎö £¨1£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÁ½¸ö»¬¿éÔÚÐ±ÃæÉÏÔ˶¯Ê±µÄ¼ÓËÙ¶È£®ÓÉÎ»ÒÆ¹«Ê½Çó³öAÔ˶¯µ½PµÄʱ¼ä£¬ÓÉËٶȹ«Ê½ÇóµÃAÔ˶¯µ½PµÄËÙ¶È£®ÔÙ¸ù¾ÝÏàÓöÊ±Î»ÒÆ¹ØÏµÁÐʽ£¬ÇóÔ˶¯Ê±¼ä£¬ÔÙÓÉÎ»ÒÆ¹«Ê½Çó½âÁ½»¬¿éµÚÒ»´ÎÏàÅöµÄλÖõ½PµÄ¾àÀ룮
£¨2£©ÏȽáºÏÉÏÌâµÄ½á¹û£¬ÓÉËٶȹ«Ê½Çó³öÁ½»¬¿éÅöײǰ˲¼äµÄËÙ¶È£¬ÔÙ¸ù¾Ýµ¯ÐÔÅöײµÄ¹æÂÉ£º¶¯Á¿ÊغãºÍ¶¯ÄÜÊØºãÁÐʽ£¬ÇóµÃÅöºó˲¼äÁ½ÕßµÄËÙ¶È£®ÔÙÓÉÔ˶¯Ñ§¹«Ê½ÇóBÓëµ²°åµÄ×îÔ¶¾àÀ룮

½â´ð ½â£º£¨1£©Á½»¬¿éÔÚÐ±ÃæÉÏÔ˶¯Ê±£¬¼ÓËÙ¶ÈÏàͬ£¬ÉèΪa£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÓУº
mgsin¦È=ma
µÃ£ºa=gsin¦È
ÉèAÔ˶¯µ½PµÄʱ¼äΪt1£¬ËÙ¶ÈΪv1£¬ÔòÓУº
l=$\frac{1}{2}a{t}_{1}^{2}$£¬v1=at1£®
½âµÃ£ºt1=$\sqrt{\frac{2l}{a}}$£¬v1=$\sqrt{2al}$
AÓëµ²°åÅöײºó£¬ÒÔËÙÂÊv1ÑØÐ±ÃæÏòÉÏ»¬¶¯£¬ÉèAÇòÔÙ¾­¹ýʱ¼ät2ÓëBÏàÓö£¬ÏàÓöµãµ½PµÄ¾àÀëΪx£®ÓÉÔ˶¯Ñ§¹æÂɵãº
x=v1t2-$\frac{1}{2}a{t}_{2}^{2}$
BÔÚÐ±ÃæÉÏ×öÔȼÓËÙÔ˶¯£¬ÓÉÔ˶¯Ñ§¹æÂÉÓУº
3l-x=$\frac{1}{2}a£¨{t}_{1}+{t}_{2}£©^{2}$
½âµÃ£ºt2=$\sqrt{\frac{l}{2a}}$£¬x=$\frac{3}{4}$l
£¨2£©ÉèAÓëBÅöײǰµÄËÙ¶È´óС·Ö±ðΪvAºÍvB£®ÔòÓУº
vA=v1-at2£®
vB=a£¨t1+t2£©
½âµÃ£ºvA=$\sqrt{\frac{al}{2}}$£¬·½ÏòÑØÐ±ÃæÏòÉÏ£®vB=3$\sqrt{\frac{al}{2}}$£¬·½ÏòÑØÐ±ÃæÏòÏ£®
ÉèAÓëBÅöײºóµÄËÙ¶È·Ö±ðΪvA¡äºÍvB¡ä£¬¹æ¶¨ÑØÐ±ÃæÏòÉÏΪÕý·½Ïò£¬Óɶ¯Á¿Êغ㶨ÂɺͻúеÄÜÊØºã¶¨ÂÉÓУº
3mvA-mvB=3mvA¡ä+mvB¡ä
$\frac{1}{2}•$3mvA2+$\frac{1}{2}$mvB2=$\frac{1}{2}•$3mvA¡ä2+$\frac{1}{2}$mvB¡ä2
½âµÃ£ºvA¡ä=-$\sqrt{\frac{al}{2}}$£¬vB¡ä=3$\sqrt{\frac{al}{2}}$
µÚÒ»´ÎÏàÅöºó£¬BÉÏ»¬µÄ¾àÀëΪxB£¬ÔòÓУº
0-vB¡ä2=-2axB£®
BÓëµ²°åµÄ×îÔ¶¾àÀëΪ£º
xm=x+xB
½âµÃ£ºxm=3l
´ð£º£¨1£©Á½»¬¿éµÚÒ»´ÎÏàÅöµÄλÖõ½PµÄ¾àÀëΪ$\frac{3}{4}$l£»
£¨2£©Á½»¬¿éµÚÒ»´ÎÏàÅöºó£¬BÓëµ²°åµÄ×îÔ¶¾àÀëÊÇ3l£®

µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÊÇÀíÇåÁ½¸ö»¬¿éµÄÔ˶¯¹ý³Ì£¬ÔËÓÃÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½±ß¼ÆËã±ß·ÖÎö£¬Òª°ÑÎÕÏàÓöʱÁ½ÕßµÄÎ»ÒÆ¹ØÏµ£¬ÕâÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÈçͼËùʾ£¬ÓÐÒ»¾ØÐÎÏßÈ¦Ãæ»ýΪS£¬ÔÑÊýΪN£¬ÄÚ×èΪr£¬ÈÆOO¡äÖáÒÔ½ÇËٶȦØ×öÔÈËÙת¶¯£¬µ±Ëü´ÓÈçͼËùʾλÖÃת¹ý90¡ãµÄ¹ý³ÌÖУ¬ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®´ÓͼʾλÖÿªÊ¼¼ÆÊ±£¬¸ÐÓ¦µç¶¯ÊÆËæÊ±¼ä±ä»¯µÄ¹æÂÉΪe=NBS¦Øsin¦Øt
B£®ÏßȦÖеçÁ÷µÄÓÐЧֵΪI=$\frac{NBS¦Ø}{£¨R+r£©}$
C£®Í¨¹ýµç×èµÄµçºÉÁ¿ÎªQ=$\frac{NBS}{£¨R+r£©}$
D£®ÔÚµç×èRÉϲúÉúµÄÈȹ¦ÂÊΪp=$\frac{{N}^{2}{B}^{2}{S}^{2}¦Ø}{2£¨R+r£©}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÊµÑéÌâ

3£®ÈçͼËùʾÊÇÓÃÖØ´¸×ö×ÔÓÉÂäÌåÔ˶¯À´¡°ÑéÖ¤»úеÄÜÊØºã¶¨ÂÉ¡±µÄʵÑé×°Öã®
£¨1£©ÎªÁ˼õСʵÑéÎó²î£¬ÏÂÁдëÊ©¿ÉÐеÄÊÇBC£¨Ìîд´úºÅ£©
A£®ÖØ´¸Ñ¡ÓÃÌå»ý½Ï´óÇÒÖÊÁ¿½ÏСµÄ
B£®ÖØ´¸Ñ¡ÓÃÌå»ý½ÏСÇÒÖÊÁ¿½Ï´óµÄ
C£®´òµã¼ÆÊ±Æ÷Ó¦¹Ì¶¨ÔÚÊúÖ±Æ½ÃæÄÚ
D£®Ó¦ÏÈ·ÅÊÖÈÃÖØ´¸ÍÏ×ÅÖ½´øÔ˶¯£¬ÔÙͨµçÈôòµã¼ÆÊ±Æ÷¹¤×÷
£¨2£©Ä³Í¬Ñ§ÊµÑ鼯Ëã½á¹ûʱ·¢ÏÖÖØÎïÖØÁ¦ÊÆÄܵļõÉÙÁ¿¡÷EpÂÔ´óÓÚ¶¯ÄܵÄÔö¼ÓÁ¿¡÷Ek£¬±¾ÊµÑéÖÐÒýÆðÎó²îµÄÖ÷ÒªÔ­ÒòÊÇÖØ´¸ÏÂÂä¹ý³ÌÖдæÔÚ×Å×èÁ¦×÷Óã®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÖÊÁ¿Ò»¶¨µÄÎïÌå·ÅÔڹ⻬µÄË®Æ½ÃæÉÏ£¬ÔÚˮƽÁ¦F×÷ÓÃÏÂ×÷¼ÓËÙÖ±ÏßÔ˶¯£¬µ±FÖð½¥¼õСʱ£¬ËüµÄ¼ÓËٶȽ«Öð½¥¼õС£»ËٶȽ«Öð½¥Ôö´ó£®£¨Ìî¡°Ôö´ó¡±»ò¡°¼õС¡±£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®¹ØÓÚÕñ¶¯ºÍ²¨£¬ÒÔÏÂ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®µ¥°Ú×ö¼òгÔ˶¯µÄ»Ø¸´Á¦ÊÇÓÉÖØÁ¦ºÍÀ­Á¦µÄºÏÁ¦Ìṩ
B£®µ¥°Ú×ö¼òгÔ˶¯µÄÖÜÆÚÓëÕñ·ùºÍ°Ú³¤ÓйØ
C£®µ±×öÊÜÆÈÔ˶¯ÎïÌåµÄƵÂʵÈÓÚ×ÔÉíµÄ¹ÌÓÐÆµÂÊʱ£¬ÆäÕñ·ù×î´ó
D£®»úе²¨´«²¥µÄËٶȵÈÓÚ²¨ÖÐÖʵãÕñ¶¯µÄËÙ¶È

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÈçͼËùʾ£¬ÏȺóÒÔËÙ¶Èv1ºÍv2ÔÈËÙ°ÑÒ»¾ØÐÎÏßȦˮƽÀ­³öÓнçÔÈÇ¿´Å³¡ÇøÓò£¬ÇÒv1=2v2£¬ÔòÔÚÏȺóÁ½ÖÖÇé¿öÏ£¨¡¡¡¡£©
A£®ÏßȦÖеĸÐÓ¦µç¶¯ÊÆÖ®±ÈΪE1£ºE2=1£º2
B£®ÏßȦÖеĸÐÓ¦µçÁ÷Ö®±ÈΪI1£ºI2=1£º2
C£®ÏßȦÖвúÉúµÄ½¹¶úÈÈÖ®±ÈQ1£ºQ2=1£º4
D£®Í¨¹ýÏßȦij½ØÃæµÄµçºÉÁ¿Ö®±Èq1£ºq2=1£º1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ

12£®Èçͼ¼×Ëùʾ£¬ÔڴŸÐӦǿ¶ÈB=lTµÄÓнçÔÈÇ¿´Å³¡ÖУ¬ÓÃÍâÁ¦½«±ß³¤1=0.5mµÄÕý·½ÐνðÊôÏß¿ò£¨¸÷´¦¶¼ÍêÈ«Ïàͬ£©ÏòÓÒÔÈËÙÀ­³ö´Å³¡£¬ÒÔbc±ß¸ÕÀ뿪´Å³¡µÄʱ¿ÌΪ¼ÆÊ±Æðµã£¬ÔÚÏß¿òÀ­Ø¦´Å³¡µÄ¹ý³ÌÖУ¬ab±ßÊܵ½µÄ°²ÅàÁ¦´óСFËæÊ±¼ät±ä»¯µÄ¹ØÏµÈçͼÒÒËùʾ£®ÔòÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Ïß¿ò×öÔÈËÙÔ˶¯µÄËÙ¶È´óСΪ2m/s
B£®Ïß¿ò²úÉúµÄ¸ÐÓ¦µçÁ÷ÎªÄæÊ±Õë·½Ïò£¬´óСΪ0.5 A
C£®½ðÊôÏß¿òµÄ×ܵç×èΪ0.5¦¸
D£®Ïß¿ò´©³ö´Å³¡¹ý³ÌÖвúÉúµÄ½¹¶úÈÈΪ0.5 J

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Ò»³¤ÇáÖʱ¡Ó²Ö½Æ¬ÖÃÓڹ⻬ˮƽµØÃæÉÏ£¬Ö½Æ¬ÉÏ·ÅÓÐÖÊÁ¿¾ùΪ 1kg µÄA¡¢BÁ½Îï¿é£¬A¡¢BÓ뱡ӲֽƬ֮¼äµÄ¶¯Ä¦²ÁÒòÊý·Ö±ðΪ¦Ì1=0.2£¬¦Ì2=0.3£¬Ë®Æ½ºãÁ¦F×÷ÓÃÔÚAÎï¿éÉÏ£¬ÈçͼËùʾ£¬ÒÑÖª×î´ó¾²Ä¦²ÁÁ¦µÈÓÚ»¬¶¯Ä¦²ÁÁ¦£¬g=10m/s2£¬Ôò£¨¡¡¡¡£©
A£®ÈôF=1 N£¬ÔòÎï¿é¡¢±¡Ó²Ö½Æ¬¶¼¾²Ö¹²»¶¯
B£®ÈôF=1.5 N£¬ÔòAÎï¿éËùÊÜĦ²ÁÁ¦´óСΪ1.5 N
C£®ÈôF=8 N£¬ÔòBÎï¿éµÄ¼ÓËÙ¶ÈΪ4.0 m/s2
D£®ÎÞÂÛÁ¦F¶à´ó£¬BÓ뱡ӲֽƬ֮¼ä¶¼²»»á·¢ÉúÏà¶Ô»¬¶¯

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÈçͼËùʾ£¬Á½Æ½ÐнðÊô°åP¡¢Qˮƽ·ÅÖã¬Éϼ«°å´øÕýµç£¬Ï¼«°å´ø¸ºµç£»°å¼ä´æÔÚÔÈÇ¿µç³¡ºÍÔÈÇ¿´Å³¡£¨Í¼ÖÐδ»­³ö£©£®Ò»¸ö´øµçÁ£×ÓÔÚÁ½°å¼äÑØÐéÏßËùʾ·¾¶×öÔÈËÙÖ±ÏßÔ˶¯£®Á£×Óͨ¹ýÁ½Æ½Ðаåºó´ÓOµã´¹Ö±½øÈëÁíÒ»¸ö´¹Ö±Ö½ÃæÏòÍâµÄÔÈÇ¿´Å³¡ÖУ¬Á£×Ó×öÔÈËÙÔ²ÖÜÔ˶¯£¬¾­¹ý°ë¸öÖÜÆÚºó´òÔÚµ²°åMNÉϵÄAµã£®²»¼ÆÁ£×ÓÖØÁ¦£®ÔòÏÂÁÐ˵·¨²»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®´ËÁ£×ÓÒ»¶¨´øÕýµç
B£®P¡¢Q¼äµÄ´Å³¡Ò»¶¨´¹Ö±Ö½ÃæÏòÀï
C£®ÈôÁíÒ»¸ö´øµçÁ£×ÓÒ²ÄÜ×öÔÈËÙÖ±ÏßÔ˶¯£¬ÔòËüÒ»¶¨Óë¸ÃÁ£×Ó¾ßÓÐÏàͬµÄºÉÖʱÈ
D£®ÈôÁíÒ»¸ö´øµçÁ£×ÓÒ²ÄÜÑØÏàͬµÄ¹ì¼£Ô˶¯£¬ÔòËüÒ»¶¨Óë¸ÃÁ£×Ó¾ßÓÐÏàͬµÄºÉÖʱÈ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸