2£®Ò»Íæ¾ßÖ±Éý·É»ú£¬´ÓµØÃæÊúÖ±Æð·É£¬Òª½µÂäµ½¾àÀëµØÃæ¸ßL=46mµÄƽ̨ÉÏ£®¸ÃÖ±Éý·É»ú´Ó¾²Ö¹¿ªÊ¼Æð·É£¬ÒÔa1=2m/s2µÄ¼ÓËٶȼÓËÙÉÏÉý£¬µ±ÉÏÉýµ½L1=4mʱ£¬·É»úÁ¢¼´¸ÄΪÒÔa2=1m/s2µÄ¼ÓËÙ¶ÈÉÏÉý£¬µ±ÔÙÉÏÉýL2=10mʱ£¬·É»úʧȥ¶¯Á¦Á¢¼´ÒÔa3=8m/s2¡¢·½ÏòÏòϵļÓËÙ¶ÈÔ˶¯£¬ÓÖ¾­Ê±¼ä¡÷t=1s»Ö¸´¶¯Á¦£¬·É»úÔÙÒÔa2=1m/s2µÄ¼ÓËÙ¶ÈÉÏÉý£¬Çó·É»úÐèÒª¶à³¤Ê±¼ä²Å¿ÉÒÔ·ÉÉÏÆ½Ì¨ËùÔÚµÄλÖã®

·ÖÎö ¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄËÙ¶ÈÎ»ÒÆ¹«Ê½·Ö±ðÇó³öÉÏÉý4mʱ£¬ÔÙÉÏÉý10mʱµÄËÙ¶È£¬Çó³öÁ½¶Î¹ý³ÌÖеÄʱ¼ä£¬¸ù¾ÝÎ»ÒÆÊ±¼ä¹«Ê½Çó³ö»Ö¸´¶¯Á¦Õâ¶Îʱ¼äÄÚµÄÎ»ÒÆ£¬´Ó¶øµÃ³ö×îºóÒ»¶Î¹ý³ÌÖеÄÎ»ÒÆ£¬½áºÏÎ»ÒÆÊ±¼ä¹«Ê½Çó³ö×îºóÒ»¶Î¹ý³ÌÖеÄʱ¼ä£¬´Ó¶øµÃ³ö×Üʱ¼ä£®

½â´ð ½â£ºµ±·É»úÉÏÉýµ½L1=4mʱ£¬ËÙ¶ÈΪ£º${v}_{1}=\sqrt{2{a}_{1}{L}_{1}}$=$\sqrt{2¡Á2¡Á4}$m/s=4m/s£¬
¾­ÀúµÄʱ¼äΪ£º${t}_{1}=\frac{{v}_{1}}{{a}_{1}}=\frac{4}{2}s=2s$£¬
ÔÙÉÏÉýL2=10mʱ£¬ËÙ¶ÈΪ£º${v}_{2}=\sqrt{{{v}_{1}}^{2}+2{a}_{2}{L}_{2}}$=$\sqrt{16+2¡Á1¡Á10}m/s=6m/s$£¬
¾­ÀúµÄʱ¼äΪ£º${t}_{2}=\frac{{v}_{2}-{v}_{1}}{{a}_{2}}=\frac{6-4}{1}s=2s$£¬
ʧȥ¶¯Á¦ºó£¬¾­Àú¡÷tʱ¼äÄÚµÄÎ»ÒÆÎª£º${L}_{3}={v}_{2}¡÷t-\frac{1}{2}{a}_{3}¡÷{t}^{2}$=$6¡Á1-\frac{1}{2}¡Á8¡Á1m$=2m£¬
ËÙ¶ÈΪ£ºv3=v2-a3¡÷t=6-8¡Á1m/s=-2m/s£¬
×îºóÒ»¶ÎµÄÎ»ÒÆÎª£ºL4=L-L1-L2-L3=46-4-10-2m=30m£¬
¸ù¾Ý${L}_{4}={v}_{3}{t}_{4}+\frac{1}{2}{a}_{2}{{t}_{4}}^{2}$
µÃ£º$30=-2{t}_{4}+\frac{1}{2}¡Á1¡Á{{t}_{4}}^{2}$£¬
½âµÃt4=10s£®
Ôòt=t1+t2+¡÷t+t4s=2+2+1+10s=15s£®
´ð£º·É»úÐèÒª15sʱ¼ä²Å¿ÉÒÔ·ÉÉÏÆ½Ì¨ËùÔÚµÄλÖã®

µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÀíÇå·É»úÔÚÕû¸ö¹ý³ÌÖеÄÔ˶¯¹æÂÉ£¬½áºÏÔ˶¯Ñ§µÄËÙ¶Èʱ¼ä¹«Ê½¡¢Î»ÒÆÊ±¼ä¹«Ê½¡¢ËÙ¶ÈÎ»ÒÆ¹«Ê½Áé»îÇó½â£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬ÓÃÁ½¸ù³¤¾ùΪ2dµÄÇáÉþ½«³¤Îªd£¬ÖÊÁ¿ÎªmµÄ¾ùÖÊľ°åÐü¹ÒÔÚ¼ä¾àΪ3dÊúֱľ׮ÉϵȸߵÄÁ½µã£¬ÖƳÉÒ»¼òÒ×Çïǧ£®Ä³´ÎάÐÞʱÓÃÁíÒ»¿é³¤Îª2d£¬ÖÊÁ¿Îª$\sqrt{\frac{6}{5}}m$ľ°å½«Ô­Ä¾°å»»µô£¬Éþ×ÓµÄÐü¹Òµã»¹ÔÚľ°åµÄÁ½¶Ëµã£¬Ä¾°å¾²Ö¹Ê±£¬F1±íʾľ°åËùÊܺÏÁ¦´óС£¬F2±íʾµ¥¸ùÇáÉþ¶Ôδ°åÀ­Á¦µÄ´óС£¬ÔòάÐ޺󣨡¡¡¡£©
A£®F1Ôö´ó£¬F2Ôö´óB£®F1²»±ä£¬F2Ôö´óC£®F1²»±ä£¬F2¼õСD£®F1²»±ä£¬F2²»±ä

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®2009Äê7ÔÂ16ÈÕ£¬Öйúº£¾üµÚÈýÅú»¤º½±à¶Ó16ÈÕÒÑ´ÓÕã½­ÖÛɽij¾ü¸ÛÆôº½£¬ÓÚ7ÔÂ30ÈÕµÖ´ïÑǶ¡Íå¡¢Ë÷ÂíÀﺣÓò£¬´Ë´Î»¤º½´ÓÖÛɽÆôº½£¬¾­¶«º£¡¢Ì¨Í庣Ͽ¡¢ÄϺ£¡¢ÂíÁù¼×º£Ï¿£¬´©Ô½Ó¡¶ÈÑóµ½´ïË÷ÂíÀﺣÓòÖ´Ðл¤º½ÈÎÎñ£¬×ܺ½³ÌΪ5ǧ¶àº£À¹ØÓڴ˴λ¤º½£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®µ±Ñо¿»¤º½½¢Í§µÄÔËÐй켣ʱ£¬²»Äܽ«Æä¿´×öÖʵã
B£®¡°5ǧ¶àº£ÀָµÄÊÇ»¤º½½¢Í§µÄº½ÐÐÎ»ÒÆ
C£®¡°5ǧ¶àº£ÀָµÄÊÇ»¤º½½¢Í§µÄº½Ðз³Ì
D£®¸ù¾ÝÌâÖÐÊý¾ÝÎÒÃÇ¿ÉÒÔÇóµÃ´Ë´Îº½ÐÐµÄÆ½¾ùËÙ¶È

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÈçͼËùʾ£¬µçÔ´µç¶¯ÊÆÎªE£¬ÄÚ×èΪr£¬Íâµç·×ܵç×èΪR£¬µ±S±ÕºÏºó£¬µçÔ´×ܹ¦ÂÊΪ$\frac{{E}^{2}}{R+r}$£¬µçÔ´µÄÊä³ö¹¦ÂÊΪ$\frac{{E}^{2}R}{£¨R+r£©^{2}}$£¬Íâµç·ÏûºÄµÄ¹¦ÂÊΪ$\frac{{E}^{2}R}{£¨R+r£©^{2}}$£¬ÄÚ²¿ÏûºÄµÄ¹¦ÂÊΪ$\frac{{E}^{2}r}{£¨R+r£©^{2}}$£¬µçÔ´µÄ¹©µçЧÂÊΪ$\frac{R}{R+r}$¡Á100%£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¼ÆËãÌâ

17£®Ä³ÐÐÊ»µÄСÆû³µµÄ³õËÙ¶ÈΪ20m/s£¬½ô¼±É²³µ£¬×îºóÒ»Ãëͨ¹ýµÄÎ»ÒÆÊÇ2mÇó£º
£¨1£©Ð¡Æû³µµÄɲ³µ¼ÓËÙ¶È£»      
£¨2£©É²³µºóСÆû³µµÄÎ»ÒÆ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÊµÑéÌâ

7£®ÔÚ¡°Ì½¾¿µç´Å¸ÐÓ¦µÄ²úÉúÌõ¼þ¡±µÄʵÑéÖУ¬ÏÖ½«µç³Ø×é¡¢»¬¶¯±ä×èÆ÷¡¢´øÌúоµÄÏßȦA¡¢ÏßȦB¡¢µçÁ÷±í¼°µç¼üK°´ÈçͼËùʾÁ¬½Ó£¬µ±µç¼üK±ÕºÏ˲¼ä£¬µçÁ÷±íÖ¸Õë×óÆ«£¬ËµÃ÷BÏßȦ²úÉúÁ˸ÐÓ¦µçÁ÷£¬Èôµ±µç¼üK¶Ï¿ªË²¼ä£¬µçÁ÷±íÖ¸Õë»á£¨Ìî¡°»á¡±»ò¡°²»»á¡±£©Æ«×ª£»µ±µç¼üK±ÕºÏºó£¬ÒªÊ¹µçÁ÷±íµÄÖ¸Õë×óÆ«£¬¿É²ÉÈ¡µÄ²Ù×÷Ϊ»¬¶¯±ä×èÆ÷µÄ»¬Æ¬PÏòÓÒ»¬¶¯£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ

14£®ÈçͼËùʾ£¬Ö±ÏßaºÍÇúÏßb·Ö±ðÊÇÔÚÆ½Ö±¹«Â·ÉÏÐÐÊ»µÄÆû³µaºÍbµÄλÖã¨x£©-ʱ¼ä£¨t£©Í¼Ïߣ®ÓÉͼ¿ÉÖª£¨¡¡¡¡£©
A£®ÔÚt1ʱ¿Ì£¬a¡¢bÁ½³µÏàÓö
B£®ÔÚt2ʱ¿Ì£¬a¡¢bÁ½³µÔ˶¯·½ÏòÏàͬ
C£®ÔÚt1µ½t2Õâ¶Îʱ¼äÄÚ£¬b³µµÄËÙÂÊÏȼõСºóÔö´ó
D£®ÔÚt1µ½t2Õâ¶Îʱ¼äÄÚ£¬b³µµÄËÙÂÊÒ»Ö±±Èa³µµÄ´ó

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÊµÑéÌâ

5£®Ä³ÊµÑéС×éÀûÓÃͼ£¨a£©ËùʾʵÑé×°Öü°Êý×Ö»¯ÐÅϢϵͳ̽¾¿¡°ÍâÁ¦×ö¹¦ÓëС³µ¶¯Äܱ仯µÄ¹ØÏµ¡±£®ÊµÑéʱ½«Ð¡³µÀ­µ½Ë®Æ½¹ìµÀµÄOλÖÃÓɾ²Ö¹ÊÍ·Å£¬ÔÚС³µ´ÓOλÖÃÔ˶¯µ½ AλÖùý³ÌÖУ¬¾­¼ÆËã»ú´¦ÀíµÃµ½Á˵¯»Éµ¯Á¦ÓëС³µÎ»ÒƵĹØÏµÍ¼ÏßÈçͼ£¨b£© Ëùʾ£¬»¹µÃµ½ÁËС³µÔÚ AλÖõÄËÙ¶È´óСvA£»ÁíÍâÓõç×Ó³Ó²âµÃС³µ£¨º¬Î»ÒÆ´«¸ÐÆ÷·¢ÉäÆ÷£©µÄ×ÜÖÊÁ¿Îªm£®»Ø´ðÏÂÁÐÎÊÌ⣺

£¨1£©ÓÉͼ£¨b£©¿ÉÖª£¬Í¼£¨a£©ÖÐAλÖõ½Á¦´«¸ÐÆ÷µÄ¾àÀë´óÓÚ£¨¡°Ð¡ÓÚ¡±¡¢¡°µÈÓÚ¡±»ò¡°´óÓÚ¡±£©µ¯»ÉÔ­³¤£®
£¨2£©Ð¡³µ´ÓOλÖÃÔ˶¯µ½AλÖùý³ÌÖе¯»É¶ÔС³µËù×öµÄ¹¦W=$\frac{{F}_{0}+{F}_{A}}{2}$•xA£¬Ð¡³µµÄ¶¯ÄܸıäÁ¿¡÷Ek=$\frac{1}{2}$m${{v}_{A}}^{2}$£®£¨ ÓÃm¡¢vA¡¢FA¡¢F0¡¢xAÖи÷Ïà¹ØÎïÀíÁ¿±íʾ£©
£¨3£©Èô½«µ¯»É´ÓС³µÉÏжÏ£¬¸øÐ¡³µÒ»³õËÙ¶Èv0£¬ÈÃС³µ´Ó¹ìµÀÓÒ¶ËÏò×ó¶Ë»¬¶¯£¬ÀûÓÃÎ»ÒÆ´«¸ÐÆ÷ºÍ¼ÆËã»úµÃµ½Ð¡³µµÄËÙ¶ÈËæÊ±¼ä±ä»¯µÄͼÏßÈçͼ£¨c£©Ëùʾ£¬ÔòС³µËùÊܹìµÀĦ²ÁÁ¦µÄ´óСf=m$\frac{{v}_{0}}{{t}_{m}}$£®£¨ ÓÃm¡¢v0¡¢tmÖи÷Ïà¹ØÎïÀíÁ¿±íʾ£©
£¨4£©×ۺϲ½Ö裨2£©¡¢£¨3£©£¬¸ÃʵÑéËùҪ̽¾¿µÄ¡°ÍâÁ¦×ö¹¦ÓëС³µ¶¯Äܱ仯µÄ¹ØÏµ¡±±í´ïʽÊÇ£¨F0+FA-2m$\frac{{v}_{0}}{{t}_{m}}$£©xA=mvA2£®£¨ÓÃm¡¢vA¡¢FA¡¢F0¡¢xA¡¢v0¡¢tmÖи÷Ïà¹ØÎïÀíÁ¿±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÈçͼËùʾ£¬ÔÚ¡¶Ì½¾¿¼ÓËÙ¶ÈaÓëÁ¦F¡¢ÖÊÁ¿MµÄ¹ØÏµ¡·ÊµÑéÖУ¬Ä³Í¬Ñ§·¢ÏÖ£¬ÔÚÔ˶¯ÖÐÖ±½Ó²â³öС³µ£¨°üÀ¨³µÄÚíÀÂ룩ËùÊܵÄϸÉþÀ­Á¦ÔÚ²Ù×÷ÉÏÓÐÒ»¶¨À§ÄÑ£¬µ«µ±Ð¡³µµÄÖÊÁ¿MÔ¶´óÓÚÖØÎïµÄÖÊÁ¿mʱ£¨Ñ¡Ì¡°Ô¶´óÓÚ¡±»ò¡°Ô¶Ð¡ÓÚ¡±£©£¬¿ÉÒÔ½üËÆµØÈÏΪС³µËùÊܵÄϸÉþÀ­Á¦µÄ´óСF=mg£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸