精英家教网 > 试题搜索列表 >将两块全等的直角三角形如图1摆放,其中

将两块全等的直角三角形如图1摆放,其中答案解析

科目:czsx 来源: 题型:

如图①,将两块全等的直角三角形纸板摆放在坐标系中,已知BC=4,AC=5.
(1)求点A坐标和直线AC的解析式;
(2)折三角形纸板ABC,使边AB落在边AC上,设折痕交BC边于点E(图②),求点E坐标;
(3)将三角形纸板ABC沿AC边翻折,翻折后记为△AMC,设MC与AD交于点N,请在图③中画出图形,并求出点N坐标.
精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

(2013•太原)数学活动---求重叠部分的面积.
问题情境:数学活动课上,老师出示了一个问题:
如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G.求重叠部分(△DCG)的面积.

(1)独立思考:请回答老师提出的问题.
(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,你能求出重叠部分(△DGH)的面积吗?请写出解答过程.
(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题.
“爱心”小组提出的问题是:如图3,将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积.
任务:①请解决“爱心”小组提出的问题,直接写出△DMN的面积是
75
16
75
16

②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图4中画出图形,标明字母,不必解答(注:也可在图1的基础上按顺时针旋转).

查看答案和解析>>

科目:czsx 来源: 题型:

数学活动——求重叠部分的面积。

问题情境:数学活动课上,老师出示了一个问题:

如图,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G。

求重叠部分(△DCG)的面积。

(1)独立思考:请解答老师提出的问题。

(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图(2),你能求出重叠部分(△DGH)的面积吗?请写出解答过程。

(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题。“爱心”小组提出的问题是:如图(3),将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN求重叠部分(△DMN)的面积、

任务:①请解决“爱心”小组所提出的问题,直接写出△DMN的面积是    

②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图中画出图形,标明字母,不必解答(注:也可在图(1)的基础上按顺时针方向旋转)。

查看答案和解析>>

科目:czsx 来源:2013年初中毕业升学考试(山西卷)数学(解析版) 题型:解答题

数学活动——求重叠部分的面积。

问题情境:数学活动课上,老师出示了一个问题:

如图(1),将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G。

求重叠部分(△DCG)的面积。

(1)独立思考:请解答老师提出的问题。

(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图(2),你能求出重叠部分(△DGH)的面积吗?请写出解答过程。

(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题。“爱心”小组提出的问题是:如图(3),将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积。

任务:①请解决“爱心”小组所提出的问题,直接写出△DMN的面积是    .

②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图中画出图形,标明字母,不必解答(注:也可在图(1)的基础上按顺时针方向旋转)。

 

查看答案和解析>>

科目:czsx 来源:2013年山西省高级中等学校招生考试数学 题型:044

数学活动——求重叠部分的面积.

问题情境:数学活动课上,老师出示了一个问题:

如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G.求重叠部分(△DCG)的面积.

(1)独立思考:请解答老师提出的问题.

(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,你能求出重叠部分(△DGH)的面积吗?请写出解答过程.

(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题.“爱心”小组提出的问题是:如图3,将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN求重叠部分(△DMN)的面积、

任务:①请解决“爱心”小组所提出的问题,直接写出△DMN的面积是________.

②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图中画出图形,标明字母,不必解答(注:也可在图(1)的基础上按顺时针方向旋转).

查看答案和解析>>

科目:czsx 来源: 题型:解答题

如图①,将两块全等的直角三角形纸板摆放在坐标系中,已知BC=4,AC=5.
(1)求点A坐标和直线AC的解析式;
(2)折三角形纸板ABC,使边AB落在边AC上,设折痕交BC边于点E(图②),求点E坐标;
(3)将三角形纸板ABC沿AC边翻折,翻折后记为△AMC,设MC与AD交于点N,请在图③中画出图形,并求出点N坐标.

查看答案和解析>>

科目:czsx 来源:2013年山西省中考数学试卷(解析版) 题型:解答题

数学活动---求重叠部分的面积.
问题情境:数学活动课上,老师出示了一个问题:
如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G.求重叠部分(△DCG)的面积.

(1)独立思考:请回答老师提出的问题.
(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,你能求出重叠部分(△DGH)的面积吗?请写出解答过程.
(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题.
“爱心”小组提出的问题是:如图3,将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积.
任务:①请解决“爱心”小组提出的问题,直接写出△DMN的面积是______.
②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图4中画出图形,标明字母,不必解答(注:也可在图1的基础上按顺时针旋转).

查看答案和解析>>

科目:czsx 来源:2013年山西省太原市中考数学试卷(解析版) 题型:解答题

数学活动---求重叠部分的面积.
问题情境:数学活动课上,老师出示了一个问题:
如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G.求重叠部分(△DCG)的面积.

(1)独立思考:请回答老师提出的问题.
(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,你能求出重叠部分(△DGH)的面积吗?请写出解答过程.
(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题.
“爱心”小组提出的问题是:如图3,将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积.
任务:①请解决“爱心”小组提出的问题,直接写出△DMN的面积是______.
②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图4中画出图形,标明字母,不必解答(注:也可在图1的基础上按顺时针旋转).

查看答案和解析>>

科目:czsx 来源:新课标三维目标导学与测评  数学八年级上册 题型:044

请你用给出的两个全等的直角三角形如图拼出所有的四边形,并指出在这些图形中哪些是平行四边形.

查看答案和解析>>

科目:czsx 来源: 题型:047

把直角边为a、b,斜边为c的两个全等的直角三角形如图所示那样放置,C、B、D三点在同一条直线上,连结AE.试证明:

查看答案和解析>>

科目:czsx 来源: 题型:

如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺精英家教网从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H.
(1)求直线AC所对应的函数关系式;
(2)当点P是线段AC(端点除外)上的动点时,试探究:
①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;
②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.
(1)如图,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP•CQ=
8
8

(2)将三角板DEF由图所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP•CQ的值是否改变?说明你的理由.
(3)在(2)的条件下,设2<x<4,两块三角板重叠面积为y,求y与x的函数关系式.
(图2,图3供解题用)

查看答案和解析>>

科目:czsx 来源: 题型:

把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.
(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时AP•CQ的值为
8
8
.将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,则AP•CQ的值是否会改变?
答:
不会
不会
.(填“会”或“不会”)此时AP•CQ的值为
8
8
.(不必说明理由)
(2)在(1)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2、图3供解题用)
(3)在(1)的条件下,PQ能否与AC平行?若能,求出y的值;若不能,试说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.
(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP•CQ=
 

(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP•CQ的值是否改变?说明你的理由;
(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)
精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.
(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP•CQ
=8
=8

(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP•CQ的值是否改变?说明你的理由.
(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)

查看答案和解析>>

科目:czsx 来源:2008年初中毕业升学考试(江苏连云港卷)数学(解析版) 题型:解答题

如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的处,直角边轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至处时,设分别交于点,与轴分别交于点

(1)求直线所对应的函数关系式;

(2)当点是线段(端点除外)上的动点时,试探究:

①点轴的距离与线段的长是否总相等?请说明理由;

②两块纸板重叠部分(图中的阴影部分)的面积是否存在最大值?若存在,求出这个最大值及取最大值时点的坐标;若不存在,请说明理由.

 

 

 

查看答案和解析>>

科目:czsx 来源:2008年初中毕业升学考试(江苏连云港卷)数学(带解析) 题型:解答题

如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的处,直角边轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至处时,设分别交于点,与轴分别交于点
(1)求直线所对应的函数关系式;
(2)当点是线段(端点除外)上的动点时,试探究:
①点轴的距离与线段的长是否总相等?请说明理由;
②两块纸板重叠部分(图中的阴影部分)的面积是否存在最大值?若存在,求出这个最大值及取最大值时点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:2009年北京市密云县中考数学二模试卷(解析版) 题型:解答题

如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H.
(1)求直线AC所对应的函数关系式;
(2)当点P是线段AC(端点除外)上的动点时,试探究:
①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;
②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:第34章《二次函数》常考题集(23):34.4 二次函数的应用(解析版) 题型:解答题

如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H.
(1)求直线AC所对应的函数关系式;
(2)当点P是线段AC(端点除外)上的动点时,试探究:
①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;
②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:第23章《二次函数与反比例函数》常考题集(22):23.5 二次函数的应用(解析版) 题型:解答题

如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H.
(1)求直线AC所对应的函数关系式;
(2)当点P是线段AC(端点除外)上的动点时,试探究:
①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;
②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由.

查看答案和解析>>