精英家教网 > 试题搜索列表 >在抛物线对称轴上有一点p,使点p到b,c

在抛物线对称轴上有一点p,使点p到b,c答案解析

科目:czsx 来源: 题型:

已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴交于点B(1,0),C(5,0).
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式;
(3)设M为OA中点,x轴上有一点E,在抛物线对称轴上有一点F.若S=ME+EF+FA,则求当S最小时,E、F两点的坐标,及此时S的值.

查看答案和解析>>

科目:czsx 来源:2010年广东省广州市天秀中学中考数学模拟试卷(解析版) 题型:解答题

已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴交于点B(1,0),C(5,0).
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式;
(3)设M为OA中点,x轴上有一点E,在抛物线对称轴上有一点F.若S=ME+EF+FA,则求当S最小时,E、F两点的坐标,及此时S的值.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴交于点B(1,0),C(5,0).
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式;
(3)设M为OA中点,x轴上有一点E,在抛物线对称轴上有一点F.若S=ME+EF+FA,则求当S最小时,E、F两点的坐标,及此时S的值.

查看答案和解析>>

科目:czsx 来源: 题型:

(2012•江汉区模拟)已知:抛物线F1:y=x2+mx+n的顶点为A(1,0)
(1)求F1的函数解析式;
(2)如图,直线y=
1
2
x+b
交x轴于点C,交y轴于点D,在抛物线F1上有一点B,且点B与点A关于直线y=
1
2
x+b
对称,若抛物线F2的顶点为点B,且经过点A,试求抛物线F2的函数解析式;
(3)将(2)中求得的抛物线F2向左平移n个单位得抛物线F3,抛物线F3的顶点为点P,是否存在n使得tan∠BAP=
3
4
?若存在试求n的值;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

已知:抛物线数学公式的顶点为A(1,0)
(1)求F1的函数解析式;
(2)如图,直线数学公式交x轴于点C,交y轴于点D,在抛物线F1上有一点B,且点B与点A关于直线数学公式对称,若抛物线F2的顶点为点B,且经过点A,试求抛物线F2的函数解析式;
(3)将(2)中求得的抛物线F2向左平移n个单位得抛物线F3,抛物线F3的顶点为点P,是否存在n使得tan∠BAP=数学公式?若存在试求n的值;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源:2013-2014学年江苏省无锡市崇安区九年级上学期期末考试数学试卷(解析版) 题型:解答题

抛物线yax22xc对称轴相交于点A(14),与x轴正半轴交于点B.

1求这条抛物线的函数关系式;

2)在抛物线对称轴上确定一点C,使△ABC是等腰三角形,求出所有点C的坐标.

 

查看答案和解析>>

科目:czsx 来源:2012年湖北省武汉市江汉区中考数学模拟试卷(解析版) 题型:解答题

已知:抛物线的顶点为A(1,0)
(1)求F1的函数解析式;
(2)如图,直线交x轴于点C,交y轴于点D,在抛物线F1上有一点B,且点B与点A关于直线对称,若抛物线F2的顶点为点B,且经过点A,试求抛物线F2的函数解析式;
(3)将(2)中求得的抛物线F2向左平移n个单位得抛物线F3,抛物线F3的顶点为点P,是否存在n使得tan∠BAP=?若存在试求n的值;若不存在,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:

(2012•顺义区二模)如图,直线AB经过第一象限,分别与x轴、y轴交于A、B两点,P为线段AB上任意一点(不与A、B重合),过点P分别向x轴、y轴作垂线,垂足分别为C、D.设OC=x,四边形OCPD的面积为S.
(1)若已知A(4,0),B(0,6),求S与x之间的函数关系式;
(2)若已知A(a,0),B(0,b),且当x=
3
4
时,S有最大值
9
8
,求直线AB的解析式;
(3)在(2)的条件下,在直线AB上有一点M,且点M到x轴、y轴的距离相等,点N在过M点的反比例函数图象上,且△OAN是直角三角形,求点N的坐标.

查看答案和解析>>

科目:czsx 来源: 题型:

25、实验与探究:
(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B'、C′的位置,并写出他们的坐标:B′
(3,5)
、C′
(5,-2)

归纳与发现:
(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P'的坐标为
(b,a)
(不必证明);
运用与拓广:
(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小.(要有必要的画图说明,并保留作图痕迹)

查看答案和解析>>

科目:czsx 来源: 题型:解答题

如图,直线AB经过第一象限,分别与x轴、y轴交于A、B两点,P为线段AB上任意一点(不与A、B重作业宝合),过点P分别向x轴、y轴作垂线,垂足分别为C、D.设OC=x,四边形OCPD的面积为S.
(1)若已知A(4,0),B(0,6),求S与x之间的函数关系式;
(2)若已知A(a,0),B(0,b),且当x=数学公式时,S有最大值数学公式,求直线AB的解析式;
(3)在(2)的条件下,在直线AB上有一点M,且点M到x轴、y轴的距离相等,点N在过M点的反比例函数图象上,且△OAN是直角三角形,求点N的坐标.

查看答案和解析>>

科目:czsx 来源:2012年北京市顺义区中考数学二模试卷(解析版) 题型:解答题

如图,直线AB经过第一象限,分别与x轴、y轴交于A、B两点,P为线段AB上任意一点(不与A、B重合),过点P分别向x轴、y轴作垂线,垂足分别为C、D.设OC=x,四边形OCPD的面积为S.
(1)若已知A(4,0),B(0,6),求S与x之间的函数关系式;
(2)若已知A(a,0),B(0,b),且当x=时,S有最大值,求直线AB的解析式;
(3)在(2)的条件下,在直线AB上有一点M,且点M到x轴、y轴的距离相等,点N在过M点的反比例函数图象上,且△OAN是直角三角形,求点N的坐标.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.

实验与探究:

(1)  由图观察易知A(0,2)关于直线l的对称点的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线l的对称点的位置,并写出他们的坐标:

(           )、   (           );(4分)

归纳与发现:

(2)  结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点的坐标为(            )(不必证明);(2分)

运用与拓广:

(3)  已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点QDE两点的距离之和最小.(要有必要的画图说明)(3分)

 


查看答案和解析>>

科目:czsx 来源: 题型:解答题

实验与探究:
(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B'、C′的位置,并写出他们的坐标:B′______、C′______;
归纳与发现:
(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P'的坐标为______(不必证明);
运用与拓广:
(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小.(要有必要的画图说明,并保留作图痕迹)

查看答案和解析>>

科目:czsx 来源: 题型:

如图,在直线l上找一点P,使点P到已知点A,B的距离相等.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,在平面直角坐标系中,函数y=x的图象l是第一、三象限的角平分线.
实验与探究:
由图观察易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出它们的坐标:B′
(3,5)
(3,5)
、C′
(5,-2)
(5,-2)

归纳与发现:
结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第一、三象限的角平分线l的对称点P′的坐标为
(n,m)
(n,m)

运用与拓广:
已知两点D(0,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.

查看答案和解析>>

科目:czsx 来源: 题型:

如图所示,请你在直线MN上找一点P,使点P到OA、OB的距离相等.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.精英家教网
实验与探究:
(1)由图观察易知A(0,2)关于直线l的对称点A′(2,0)的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′
 
、C′
 

归纳与发现:
(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为
 
(不必证明);
运用与拓广:
(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,在平面直角坐标系中,直线L:y=x是第一、三象限的角平分线.
(1)观察与探究:
由图易知:A(0,2)关于直线L的对称点A′的坐标为(2,0);B(5,3)关于直线L的对称点B′的坐标为(3,5);请在图中标出C(-6,1)关于直线L的对称点C′的位置,并写出它的坐标:C′
 

(2)归纳与发现:
结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线L的对称点P′的坐标为
 
(不必证明);
(3)运用与拓广:已知两点M(3,-2)、N(-1,-4),试在直线L上确定一点Q,使点Q到M、N两点的距离之和最小,并求出Q点坐标.

查看答案和解析>>

科目:czsx 来源: 题型:

利用正方形网格线作图
(1)在线段AC上找一点M,使点M到AB和BC的距离相等;
(2)在射线BM上找一点N,使NB=NC.

查看答案和解析>>

科目:czsx 来源: 题型:

精英家教网如图,在平面直角坐标系中,直线l是第二、四象限的角平分线.
(1)实验与探究:由图观察易知A(0,2)关于直线l的对称点A′的坐标为(-2,0),请在图中分别标明B(-1,5)、C(3,2)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;
(2)归纳与发现:结合图观察以上三组点的坐标,你会发现坐标平面内任一点P(a,b)关于第二、四象限的角平分线l的对称点P'的坐标为
 
(不必证明);
(3)运用与拓展:已知两点D(-1,-3)、E(2,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出点Q的坐标.

查看答案和解析>>