精英家教网 > 试题搜索列表 >二次函数Y=AX平方+bx+cdetuxiang

二次函数Y=AX平方+bx+cdetuxiang答案解析

科目:czsx 来源:2011-2012年浙江省衢州华外九年级上学期第二次质量检测数学卷 题型:解答题

(本题10分)问题情境

已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?

数学模型

设该矩形的一边长为x,周长为y,则y与x的函数关系式为                       

探索研究

⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.

①填写下表,画出函数的图象:

x

……

1

2

3

4

……

y

……

 

 

 

 

 

 

 

……

 

 

 

2

 
②观察图象,试描述该函数的增减性(y随x变化发生什么变化);

③在求二次函数y=ax+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过

配方得到.请你通过配方求函数(x>0)的最小值.

解决问题

⑵用上述方法解决“问题情境”中的问题,直接写出答案.

 

查看答案和解析>>

科目:czsx 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:czsx 来源: 题型:

(本题10分)问题情境


已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的一边长为x,周长为y,则y与x的函数关系式为                       
探索研究
⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.
①填写下表,画出函数的图象:
x
……



1
2
3
4
……
y
……
 
 
 
 
 
 
 
……
 

2

 
②观察图象,试描述该函数的增减性(y随x变化发生什么变化);

③在求二次函数y=ax+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过
配方得到.请你通过配方求函数(x>0)的最小值.
解决问题
⑵用上述方法解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

科目:czsx 来源:2011-2012年浙江省衢州华外九年级上学期第二次质量检测数学卷 题型:解答题

(本题10分)问题情境


已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的一边长为x,周长为y,则y与x的函数关系式为                       
探索研究
⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.
①填写下表,画出函数的图象:

x
……



1
2
3
4
……
y
……
 
 
 
 
 
 
 
……
 

2

 
②观察图象,试描述该函数的增减性(y随x变化发生什么变化);

③在求二次函数y=ax+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过
配方得到.请你通过配方求函数(x>0)的最小值.
解决问题
⑵用上述方法解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

科目:czsx 来源: 题型:

(本题10分)问题情境

已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?

数学模型

设该矩形的一边长为x,周长为y,则y与x的函数关系式为                       

探索研究

⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.

①填写下表,画出函数的图象:

x

……

1

2

3

4

……

y

……

 

 

 

 

 

 

 

……

 

 

 

2

 
②观察图象,试描述该函数的增减性(y随x变化发生什么变化);

③在求二次函数y=ax+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过

配方得到.请你通过配方求函数(x>0)的最小值.

解决问题

⑵用上述方法解决“问题情境”中的问题,直接写出答案.

 

查看答案和解析>>

科目:czsx 来源: 题型:

下面是一个二次函数y=ax+bx+c的自变量x和函数y的对应值表:

x

-3

-2

-1

0

1

2

3

y

12

5

0

-3

-4

-3

0

根据表中提供的信息解答下列各题:

(1)求抛物线与y轴的交点坐标;

(2)抛物线的对称轴是在y轴的右边还是左边?并说明理由

(3)设抛物线与x轴两个交点分别为A、B,顶点为C,求△ABC的面积.

查看答案和解析>>

科目:czsx 来源: 题型:

已知二次函数y=ax²+bx+c(c≠0)的图像如图4所示,下列说法错误的是:

(A)图像关于直线x=1对称

(B)函数y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的两个根

(D)当x<1时,y随x的增大而增大

查看答案和解析>>

科目:czsx 来源: 题型:

(2013•松北区一模)已知矩形ABCD的周长为12,E、F、G、H为矩形ABCD的各边中点,若AB=x,四边形EFGH的面积为y.
(1)请直接写出y与x的函数关系式;
(2)根据(1)中的函数关系式,计算当x为何值时,y最大,并求出最大值.
(参考公式:当x=-
b
2a
时,二次函数y=ax+bx+c(a≠0)有最小(大)值
4ac-b2
4a

查看答案和解析>>

科目:czsx 来源:2013-2014学年山东烟台海阳市九年级上期末数学试卷(解析版) 题型:填空题

二次函数y=ax+bx+c的图像如图所示,则不等式ax+bx+c>0的解集是            

 

 

查看答案和解析>>

科目:czsx 来源:2013届黑龙江省哈尔滨市松北区九年级升学调研测试(一)数学试卷(带解析) 题型:解答题

已知矩形ABCD的周长为12,E、F、G、H为矩形ABCD的各边中点,若AB=x,四边形EFGH的面积为y.

(1)请直接写出y与x的函数关系式;
(2)根据(1)中的函数关系式,计算当x为何值时,y最大,并求出最大值.
(参考公式:当x=-时,二次函数y=ax+bx+c(a≠o)有最小(大)值

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:czsx 来源:2012-2013学年黑龙江省哈尔滨市松北区九年级升学调研测试(一)数学试卷(解析版) 题型:解答题

已知矩形ABCD的周长为12,E、F、G、H为矩形ABCD的各边中点,若AB=x,四边形EFGH的面积为y.

(1)请直接写出y与x的函数关系式;

(2)根据(1)中的函数关系式,计算当x为何值时,y最大,并求出最大值.

(参考公式:当x=-时,二次函数y=ax+bx+c(a≠o)有最小(大)值

 

查看答案和解析>>

科目:czsx 来源:2012届江苏盐城亭湖区九年级下学期第一次调研考试数学试卷(带解析) 题型:解答题

如图11,已知○为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).

【小题1】求点B的坐标
【小题2】若二次函数y=ax+bx+c的图象经过A、B、O三点,求此二次函数的解析式;
【小题3】在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:czsx 来源: 题型:

如图11,已知○为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).

【小题1】求点B的坐标
【小题2】若二次函数y=ax+bx+c的图象经过A、B、O三点,求此二次函数的解析式;
【小题3】在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:czsx 来源:2011-2012学年江苏盐城亭湖区九年级下学期第一次调研考试数学试卷(解析版) 题型:解答题

如图11,已知○为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).

1.求点B的坐标

2.若二次函数y=ax+bx+c的图象经过A、B、O三点,求此二次函数的解析式;

3.在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由。

 

查看答案和解析>>

科目:czsx 来源: 题型:

如图11,已知○为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).

1.求点B的坐标

2.若二次函数y=ax+bx+c的图象经过A、B、O三点,求此二次函数的解析式;

3.在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由。

 

查看答案和解析>>

科目:czsx 来源: 题型:解答题

已知矩形ABCD的周长为12,E、F、G、H为矩形ABCD的各边中点,若AB=x,四边形EFGH的面积为y.
(1)请直接写出y与x的函数关系式;
(2)根据(1)中的函数关系式,计算当x为何值时,y最大,并求出最大值.
(参考公式:当x=-数学公式时,二次函数y=ax+bx+c(a≠0)有最小(大)值数学公式

查看答案和解析>>

科目:czsx 来源: 题型:

若二次函数y=ax+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M (x0y0)在x轴下方,则下列判断中正确的是(     ).

   A.a>0       B.b2-4ac≥0       C. a(x0x1)( x0x2)<0     D.x1<x0<x2

查看答案和解析>>

科目:czsx 来源: 题型:

若二次函数y=ax+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M (x0y0)在x轴下方,则下列判断中正确的是(     ).

   A.a>0       B.b2-4ac≥0       C. a(x0x1)( x0x2)<0     D.x1<x0<x2

查看答案和解析>>

科目:czsx 来源: 题型:

二次函数y=ax+bx+c(x≠0)的图象如图所示,若M=a+b-c,N=4a-2b+c,P=2a-b,则M、N、P中,值小于0的数有(     )

A、3个    B、2个     C、1个     D、0个

查看答案和解析>>