精英家教网 > 试题搜索列表 >等要直角三角形旋转始终与△AGC相似

等要直角三角形旋转始终与△AGC相似答案解析

科目:czsx 来源:2013届江苏省无锡市八年级下学期期中考试数学卷(解析版) 题型:解答题

如图(1),△ABC与△EFD为等腰直角三角形,ACDE重合,AB=AC=EF=3,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DEDF(或它们的延长线)分别交BC(或它的延长线) 于GH点,如图(2)

 

 

(1)问:始终与△AGC相似的三角形有                        

(2)设CG=xBH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);

(3)问:当x为何值时,△AGH是等腰三角形。

【解析】(1)根据△ABC与△EFD为等腰直角三角形,AC与DE重合,利用相似三角形的判定定理即可得出结论.

(2)由△AGC∽△HAB,利用其对应边成比例列出关于x、y的关系式:3:y=x:3即可.

(3)此题要采用分类讨论的思想,当CG<1/2BC时,当CG=1/2BC时,当CG>1/2BC时分别得出即可

 

查看答案和解析>>

科目:czsx 来源: 题型:

如图(1),△ABC与△EFD为等腰直角三角形,ACDE重合,AB=AC=EF=3,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DEDF(或它们的延长线)分别交BC(或它的延长线) 于GH点,如图(2)

 

 

(1)问:始终与△AGC相似的三角形有                       

(2)设CG=xBH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);

(3)问:当x为何值时,△AGH是等腰三角形。

【解析】(1)根据△ABC与△EFD为等腰直角三角形,AC与DE重合,利用相似三角形的判定定理即可得出结论.

(2)由△AGC∽△HAB,利用其对应边成比例列出关于x、y的关系式:3:y=x:3即可.

(3)此题要采用分类讨论的思想,当CG<1/2BC时,当CG=1/2BC时,当CG>1/2BC时分别得出即可

 

查看答案和解析>>

科目:czsx 来源: 题型:

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它们的延长线)所在的直线于G,H点,如图(2)
精英家教网
(1)问:始终与△AGC相似的三角形有
 
 

(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);
(3)问:当x为何值时,△AGH是等腰三角形.

查看答案和解析>>

科目:czsx 来源: 题型:

如图①,△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°.如图②所示,现固定△ABC,将△EFD绕点A顺时针旋转,当AE边与AB边重合时,旋转中止,若不考虑旋转开始和结束时这两种特殊的情形,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H两点,设CG=x.
(1)始终与△AGC相似的三角形有
△HAB
△HAB
△HGA
△HGA

(2)设BH=y,求y关于x的函数关系式;
(3)当x为何值时,△AGH是等腰三角形?

查看答案和解析>>

科目:czsx 来源: 题型:

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A 顺时针旋转,当DF边与AB边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2).
(1)问:始终与△AGC相似的三角形有
△HGA
△HGA
△HAB
△HAB

(2)请选择(1)中的一组相似三角形加以证明.

查看答案和解析>>

科目:czsx 来源: 题型:

如图1,△ABC与△EFA为等腰直角三角形,AC与AE重合,AB=EF=9,∠BAC=∠AEF=90°,固定△ABC,将△EFA绕点A顺时针旋转,当AF边与AB边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设AE、AF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图2.

(1)问:在图2中,始终与△AGC相似的三角形有
△HGA
△HGA
△HAB
△HAB

(2)设CG=x,BH=y,GH=z,求:
①y关于x的函数关系式;
②z关于x的函数关系式;(只要求根据第(1)问的结论说明理由)
(3)直接写出:当x为何值时,AG=AH.

查看答案和解析>>

科目:czsx 来源: 题型:

如图(1),△ABC与△EFD为等腰直角三角形,ACDE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DEDF(或它们的延长线)分别交BC(或它的延长线) 于GH点,如图(2)

(1)问:始终与△AGC相似的三角形有        

(2)设CG=xBH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由)

(3)问:当x为何值时,△AGH是等腰三角形.

 

查看答案和解析>>

科目:czsx 来源: 题型:

(本小题满分12分)
如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A 顺时针旋转,当DF边与AB边重合时,旋转中止。不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2)。

【小题1】(1)问:始终与△AGC相似的三角形有              
【小题2】(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);
【小题3】(3)问:当x为何值时,△AGH是等腰三角形?

查看答案和解析>>

科目:czsx 来源: 题型:

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线) 于G,H点,如图(2)

 

 

 

 

 


(1)问:始终与△AGC相似的三角形有        

(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由)

(3)问:当x为何值时,△AGH是等腰三角形.

 

查看答案和解析>>

科目:czsx 来源:2011年河北省衡水市五校九年级下学期第三次月考数学卷 题型:解答题

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A 顺时针旋转,当DF边与AB边重合时,旋转中止。不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2)。

1.问:始终与△AGC相似的三角形有                

2.设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);

3.问:当x为何值时,△AGH是等腰三角形?

 

查看答案和解析>>

科目:czsx 来源:2011年广东省东莞市中考数学真题试卷 题型:选择题

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线) 于G,H点,如图(2)

 

 

 

 

 


(1)问:始终与△AGC相似的三角形有        

(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由)

(3)问:当x为何值时,△AGH是等腰三角形.

 

查看答案和解析>>

科目:czsx 来源:2011-2012年河北省衡水市五校九年级第三次联考数学卷 题型:解答题

(本小题满分12分)
如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A 顺时针旋转,当DF边与AB边重合时,旋转中止。不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2)。

【小题1】(1)问:始终与△AGC相似的三角形有              
【小题2】(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据2的情况说明理由);
【小题3】(3)问:当x为何值时,△AGH是等腰三角形?

查看答案和解析>>

科目:czsx 来源:2013年初中数学单元提优测试卷-相似的判定(解析版) 题型:解答题

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A 顺时针旋转,当DF边与AB边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2).

(1)问:始终与△AGC相似的三角形有        

(2)请选择(1)中的一组相似三角形加以证明.

 

查看答案和解析>>

科目:czsx 来源:2013年初中数学单元提优测试卷-相似的判定(带解析) 题型:解答题

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=EF,∠BAC=∠DEF=90°,固定△ABC,将△EFD绕点A 顺时针旋转,当DF边与AB边重合时,旋转中止.不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2).

(1)问:始终与△AGC相似的三角形有        
(2)请选择(1)中的一组相似三角形加以证明.

查看答案和解析>>

科目:czsx 来源: 题型:

如图(1),△ABC与△EFD为等腰直角三角形,ACDE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DEDF(或它们的延长线)分别交BC(或它的延长线) 于GH点,如图(2)

(1)问:始终与△AGC相似的三角形有       
(2)设CG=xBH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由)
(3)问:当x为何值时,△AGH是等腰三角形.

查看答案和解析>>

科目:czsx 来源: 题型:

如图(1),△ABC与△EFD为等腰直角三角形,ACDE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DEDF(或它们的延长线)分别交BC(或它的延长线) 于GH点,如图(2)

(1)问:始终与△AGC相似的三角形有        

(2)设CG=xBH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由)

(3)问:当x为何值时,△AGH是等腰三角形.

 

查看答案和解析>>

科目:czsx 来源:2011年初中毕业升学考试(湖南娄底卷)数学 题型:解答题

如图(1),△ABC与△EFD为等腰直角三角形,ACDE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DEDF(或它们的延长线)分别交BC(或它的延长线) 于GH点,如图(2)

(1)问:始终与△AGC相似的三角形有        

(2)设CG=xBH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由)

(3)问:当x为何值时,△AGH是等腰三角形.

 

查看答案和解析>>

科目:czsx 来源:2011-2012学年江苏省无锡市羊尖中学八年级下学期期中考试数学卷(带解析) 题型:解答题

如图(1),△ABC与△EFD为等腰直角三角形,ACDE重合,AB=AC=EF=3,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DEDF(或它们的延长线)分别交BC(或它的延长线) 于GH点,如图(2)

(1)问:始终与△AGC相似的三角形有                       
(2)设CG=xBH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);
(3)问:当x为何值时,△AGH是等腰三角形。

查看答案和解析>>

科目:czsx 来源:2012届浙江金华十八中九年级上期期中调研数学试卷(带解析) 题型:解答题

如图(1)△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线) 于G,H点,如图(2)

(1)问:始终与△AGC相似的三角形有              
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由)
(3)问:当x为何值时,△AGH是等腰三角形.

查看答案和解析>>

科目:czsx 来源:2011年初中毕业升学考试(广东卷)数学 题型:解答题

如图(1),△ABC与△EFD为等腰直角三角形,ACDE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DEDF(或它们的延长线)分别交BC(或它的延长线) 于GH点,如图(2)

(1)问:始终与△AGC相似的三角形有        

(2)设CG=xBH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由)

(3)问:当x为何值时,△AGH是等腰三角形.

 

查看答案和解析>>