精英家教网 > 试题搜索列表 >已知△ABC是边长为2的等边三角形.动点P满足

已知△ABC是边长为2的等边三角形.动点P满足答案解析

科目:czsx 来源: 题型:

已知△ABC是边长为1cm的等边三角形,以BC为边作等腰三角形BCD,使得DB=DC,且∠BDC=120°,点M是AB边上的一个动点,作∠MDN交AC边于点N,且满足∠MDN=60°,则△AMN的周长为
2
2

查看答案和解析>>

科目:czsx 来源: 题型:填空题

已知△ABC是边长为1cm的等边三角形,以BC为边作等腰三角形BCD,使得DB=DC,且∠BDC=120°,点M是AB边上的一个动点,作∠MDN交AC边于点N,且满足∠MDN=60°,则△AMN的周长为________.

查看答案和解析>>

科目:czsx 来源:2013年4月中考数学模拟试卷(57)(解析版) 题型:填空题

已知△ABC是边长为1cm的等边三角形,以BC为边作等腰三角形BCD,使得DB=DC,且∠BDC=120°,点M是AB边上的一个动点,作∠MDN交AC边于点N,且满足∠MDN=60°,则△AMN的周长为   

查看答案和解析>>

科目:czsx 来源:2013年5月中考数学模拟试卷(14)(解析版) 题型:填空题

已知△ABC是边长为1cm的等边三角形,以BC为边作等腰三角形BCD,使得DB=DC,且∠BDC=120°,点M是AB边上的一个动点,作∠MDN交AC边于点N,且满足∠MDN=60°,则△AMN的周长为   

查看答案和解析>>

科目:czsx 来源:2013年5月中考数学模拟试卷(11)(解析版) 题型:填空题

已知△ABC是边长为1cm的等边三角形,以BC为边作等腰三角形BCD,使得DB=DC,且∠BDC=120°,点M是AB边上的一个动点,作∠MDN交AC边于点N,且满足∠MDN=60°,则△AMN的周长为   

查看答案和解析>>

科目:czsx 来源:2013年4月中考数学模拟试卷(12)(解析版) 题型:填空题

已知△ABC是边长为1cm的等边三角形,以BC为边作等腰三角形BCD,使得DB=DC,且∠BDC=120°,点M是AB边上的一个动点,作∠MDN交AC边于点N,且满足∠MDN=60°,则△AMN的周长为   

查看答案和解析>>

科目:czsx 来源:2012年广东省深圳市中考数学模拟试卷(九)(解析版) 题型:填空题

已知△ABC是边长为1cm的等边三角形,以BC为边作等腰三角形BCD,使得DB=DC,且∠BDC=120°,点M是AB边上的一个动点,作∠MDN交AC边于点N,且满足∠MDN=60°,则△AMN的周长为   

查看答案和解析>>

科目:czsx 来源:广东省期末题 题型:解答题

如图,已知△ABC是等边三角形,D为AC边上的一个动点,DG∥AB,延长AB到E,使BE=CD,连结DE交BC于F。
(1)求证:DF=EF;
(2)若△ABC的边长为a,BE的长为b,且a、b满足,求BF的长;
(3)若△ABC的边长为5,设CD=x,BF=y,求y与x间的函数关系式,并写出自变量x的取值范围。

查看答案和解析>>

科目:czsx 来源:期末题 题型:解答题

如图,已知△ABC是等边三角形,D为AC边上的一个动点,DG∥AB,延长AB到E,使BE=CD,连结DE交BC于F.
(1)求证:DF=EF;
(2)若△ABC的边长为,BE的长为,且a、b满足,求BF的长;
(3)若△ABC的边长为5,设CD=x,BF=y,求y与x间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知△ABC是等边三角形,D为AC上一个动点,延长AB至E,使BE=CD,连接DE交BC于点F.
(1)求证:DF=EF;
(2)若△ABC的边长为m,BE=n,且m、n满足(m-5)2=4(n-1)-n2,求BF的长.

查看答案和解析>>

科目:czsx 来源: 题型:

如图,已知△ABC是等边三角形,D为AC边上的一个动点,DG∥AB,延长AB到E,使BE=CD,连结DE交BC于F.
(1)求证:DF=EF;
(2)若△ABC的边长为a,BE的长为b,且a,b满足(a-5)2+b2-6b+9=0,求BF的长.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

7.如图,在△ABC中,∠C=90°,BC、AC、AB边的长分别记为a、b、c,点E是BC边上一个动点(点E与点B、C不重合),连接AE.已知a、b满足$\left\{\begin{array}{l}{b-6=0}\\{2a-b=10}\end{array}\right.$,且c是不等式组$\left\{\begin{array}{l}{\frac{x+12}{4}≤x+6}\\{\frac{2x+2}{3}>x-3}\end{array}\right.$的最大整数解.
(1)求a、b、c的长.
(2)线段AE将△ABC分为△ABE和△ACE,若这两个三角形的周长相等,求CE的长.
(3)将△ACE沿直线AE折叠,使点C恰好落在AB边上的点C′处,求此时CE的长.(若需要,请自己画出符合题意的图形)

查看答案和解析>>

科目:czsx 来源: 题型:

已知:在△ABC中,∠ACB为锐角,D是射线BC上一动点(D与C不重合).以AD为一边向右侧作等边△ADE(C与E不重合),连接CE.
(1)若△ABC为等边三角形,当点D在线段BC上时,(如图1所示),则直线BD与直线CE所夹锐角为
60
60
度;
(2)若△ABC为等边三角形,当点D在线段BC的延长线上时(如同2所示),你在(1)中得到的结论是否仍然成立?请说明理由;
(3)若△ABC不是等边三角形,且BC>AC(如图3所示).试探究当点D在线段BC上时,你在(1)中得到的结论是否仍然成立?若成立,请说明理由;若不成立,请指出当∠ACB满足什么条件时,能使(1)中的结论成立?并说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:解答题

已知Rt△ABC中,直角边AC=3,BC=4,P、Q分别是AB、BC上的动点,且点P不与A、B重合.点Q不与B、C重合.
(1)若CP⊥AB于点P,如图1,△CPQ为等腰三角形,这时满足条件的点Q有几个?直接写出相等的腰和相应的CQ的长(不写解答过程)
(2)当P是AB的中点时,如图2,若△CPQ与△ABC相似,这时满足条件的点Q有几个?分别求出相应的CQ的长?
(3)当CQ的长取不同的值时,除PQ垂直于BC的△CPQ外,其余的△CPQ是否可能为直角三角形?若可能,请说明所有情况?若不可能,请说明理由.

查看答案和解析>>

科目:czsx 来源:2009-2010学年北京市清华附中九年级(上)统练数学试卷(7)(解析版) 题型:解答题

已知:在△ABC中,∠ACB为锐角,D是射线BC上一动点(D与C不重合).以AD为一边向右侧作等边△ADE(C与E不重合),连接CE.
(1)若△ABC为等边三角形,当点D在线段BC上时,(如图1所示),则直线BD与直线CE所夹锐角为______度;
(2)若△ABC为等边三角形,当点D在线段BC的延长线上时(如图2所示),你在(1)中得到的结论是否仍然成立?请说明理由;
(3)若△ABC不是等边三角形,且BC>AC(如图3所示).试探究当点D在线段BC上时,你在(1)中得到的结论是否仍然成立?若成立,请说明理由;若不成立,请指出当∠ACB满足什么条件时,能使(1)中的结论成立?并说明理由.

查看答案和解析>>

科目:czsx 来源:2008-2009学年北京市海淀区九年级(上)期中数学试卷(解析版) 题型:解答题

已知:在△ABC中,∠ACB为锐角,D是射线BC上一动点(D与C不重合).以AD为一边向右侧作等边△ADE(C与E不重合),连接CE.
(1)若△ABC为等边三角形,当点D在线段BC上时,(如图1所示),则直线BD与直线CE所夹锐角为______度;
(2)若△ABC为等边三角形,当点D在线段BC的延长线上时(如图2所示),你在(1)中得到的结论是否仍然成立?请说明理由;
(3)若△ABC不是等边三角形,且BC>AC(如图3所示).试探究当点D在线段BC上时,你在(1)中得到的结论是否仍然成立?若成立,请说明理由;若不成立,请指出当∠ACB满足什么条件时,能使(1)中的结论成立?并说明理由.

查看答案和解析>>

科目:czsx 来源:2012年湖北省武汉市中考数学模拟试卷(三)(解析版) 题型:解答题

已知Rt△ABC中,直角边AC=3,BC=4,P、Q分别是AB、BC上的动点,且点P不与A、B重合.点Q不与B、C重合.
(1)若CP⊥AB于点P,如图1,△CPQ为等腰三角形,这时满足条件的点Q有几个?直接写出相等的腰和相应的CQ的长(不写解答过程)
(2)当P是AB的中点时,如图2,若△CPQ与△ABC相似,这时满足条件的点Q有几个?分别求出相应的CQ的长?
(3)当CQ的长取不同的值时,除PQ垂直于BC的△CPQ外,其余的△CPQ是否可能为直角三角形?若可能,请说明所有情况?若不可能,请说明理由.

查看答案和解析>>

科目:czsx 来源:2012年湖北省武汉市武昌区洪山区部分学校联考初三数学试卷(解析版) 题型:解答题

已知Rt△ABC中,直角边AC=3,BC=4,P、Q分别是AB、BC上的动点,且点P不与A、B重合.点Q不与B、C重合.
(1)若CP⊥AB于点P,如图1,△CPQ为等腰三角形,这时满足条件的点Q有几个?直接写出相等的腰和相应的CQ的长(不写解答过程)
(2)当P是AB的中点时,如图2,若△CPQ与△ABC相似,这时满足条件的点Q有几个?分别求出相应的CQ的长?
(3)当CQ的长取不同的值时,除PQ垂直于BC的△CPQ外,其余的△CPQ是否可能为直角三角形?若可能,请说明所有情况?若不可能,请说明理由.

查看答案和解析>>

科目:czsx 来源: 题型:


已知:△ABC是等腰三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:

(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:

①线段PB=  ,PC= 2 

②猜想:PA2,PB2,PQ2三者之间的数量关系为 PA2+PB2=PQ2 

(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;

(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)

查看答案和解析>>

科目:czsx 来源: 题型:解答题

13.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:
(1)如图①,若点P在线段AB上,且AC=1+$\sqrt{3}$,PA=$\sqrt{2}$,则:
①线段PB=$\sqrt{6}$,PC=2;
②猜想:PA2,PB2,PQ2三者之间的数量关系为PA2+PB2=PQ2
(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;
(3)若动点P满足$\frac{PA}{PB}$=$\frac{1}{3}$,求$\frac{PC}{AC}$的值.(提示:请利用备用图进行探求) 

查看答案和解析>>