精英家教网 > 初中数学 > 题目详情
如图,已知△ABC是等边三角形,D为AC边上的一个动点,DG∥AB,延长AB到E,使BE=CD,连结DE交BC于F.
(1)求证:DF=EF;
(2)若△ABC的边长为,BE的长为,且a、b满足,求BF的长;
(3)若△ABC的边长为5,设CD=x,BF=y,求y与x间的函数关系式,并写出自变量x的取值范围.
(1)证明:∵ △ABC是等边三角形
∴∠A=∠B=60°
又 ∵ DG∥AB
∴∠CDG=∠A=60°,∠CGD=∠B=60° 且∠GDF=∠E
∴△CDG是等边三角形
∴ DG=CD=BE
在△DGF和△EBF中

∴△DGF≌△EBF(AAS)
∴ DF=EF
(2)解:由,得(a-5)2+(b-3)2=0
∵(a-5)2 ≥ 0 ,(b-3)2 ≥ 0
∴(a-5)2=0 ,(b-3)2=0
∴ a=5,b=3 ,
即:BC=5,CG=BE=3
又∵ △DGF≌△EBF,
∴ BF=GF
∴ BF=(BC-CG)=(5-3)=1
(3)解:∵ CD=x,BF=y ,BC=5
又∵ BF=(BC-CG)=(BC-CD) =(5-x)
∴所求的解析式y=-x+
自变量x的取值范围是0<x<5
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC是边长为4的正三角形,AB在x轴上,点C在第一象限,AC与y轴交于点D,点A精英家教网的坐标为(-1,0).
(1)写出B,C,D三点的坐标;
(2)若抛物线y=ax2+bx+c经过B,C,D三点,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC是等边三角形,AB交⊙O于点D,DE⊥AC于点E.
(1)求证:DE为⊙O的切线.
(2)已知DE=3,求:弧BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,
求证:△CMN是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄城区模拟)如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.
(1)求证:△BCE≌△FDC;
(2)判断四边形ABDF是怎样的四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•奉贤区二模)如图,已知△ABC是等边三角形,点D是BC延长线上的一个动点,以AD为边作等边△ADE,过点E作BC的平行线,分别交AB,AC的延长线于点F,G,联结BE.
(1)求证:△AEB≌△ADC;
(2)如果BC=CD,判断四边形BCGE的形状,并说明理由.

查看答案和解析>>

同步练习册答案