精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,
求证:△CMN是等边三角形.
分析:根据△ACD≌△BCE,得出AD=BE,AM=BN;又△AMC≌△BNC,可得CM=CN,∠ACM=∠BCN,证明∠NCM=∠ACB=60°即可证明△CMN是等边三角形;
解答:证明:∵△ABC是等边三角形,△CDE是等边三角形,精英家教网M是线段AD的中点,N是线段BE的中点,
∴∠ACB=∠ECD=60°,
∴∠ACB+∠BCD=∠ECD+∠BCD,即∠ACD=∠BCE,
在△ACD和△BCE中,
AC=BC
∠ACD=∠BCE
CD=CE

∴△ACD≌△BCE,
∴AD=BE,AM=BN;
∴AC=BC,∠CAD=∠CBE,AM=BN,
∴△AMC≌△BNC(SAS),
∴CM=CN,∠ACM=∠BCN;
又∵∠NCM=∠BCN-∠BCM,
∠ACB=∠ACM-∠BCM,
∴∠NCM=∠ACB=60°,
∴△CMN是等边三角形.
点评:本题考查了等边三角形的判定与性质及全等三角形的判定与性质,难度一般,熟练掌握等边三角形的性质是解答的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC是边长为4的正三角形,AB在x轴上,点C在第一象限,AC与y轴交于点D,点A精英家教网的坐标为(-1,0).
(1)写出B,C,D三点的坐标;
(2)若抛物线y=ax2+bx+c经过B,C,D三点,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC是等边三角形,AB交⊙O于点D,DE⊥AC于点E.
(1)求证:DE为⊙O的切线.
(2)已知DE=3,求:弧BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄城区模拟)如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.
(1)求证:△BCE≌△FDC;
(2)判断四边形ABDF是怎样的四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•奉贤区二模)如图,已知△ABC是等边三角形,点D是BC延长线上的一个动点,以AD为边作等边△ADE,过点E作BC的平行线,分别交AB,AC的延长线于点F,G,联结BE.
(1)求证:△AEB≌△ADC;
(2)如果BC=CD,判断四边形BCGE的形状,并说明理由.

查看答案和解析>>

同步练习册答案