精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知△ABC是等边三角形,AB交⊙O于点D,DE⊥AC于点E.
(1)求证:DE为⊙O的切线.
(2)已知DE=3,求:弧BD的长.
分析:(1)连接OD,由于△ABC是等边三角形,那么三个内角都等于60°,而OB=OD,易证△BOD是等边三角形;在Rt△ADE中,∠DAE=60°,∠AED=90°,可求∠ADE=30°,易求∠ODE=90°,从而可证DE是⊙O的切线;
(2)连接OA,由于△ABC是等边三角形,OB=OD,利用等腰三角形三线合一定理,易求OA⊥BC,∠BAO=∠CAO=30°,而△BOD是等边三角形,从而易求∠AOD=30°,则∠AOD=∠OAD,即AD=OD,在Rt△ADE中,利用三角函数值,可求AD,即知OD,利用弧长计算公式即可求弧BD的长.
解答:证明:(1)连接OD;
∵△ABC是等边三角形,
∴∠BAC=∠B=∠A=60°,
又∵OB=OD,精英家教网
∴△BOD是等边三角形;
在Rt△ADE中,
∵∠AED=90°,∠A=60°,
∴∠ADE=30°,
∴∠ADE+∠BDO=90°,
∴∠ODE=180°-90°=90°,
∴DE是⊙O的切线;

(2)连接OA;
∵△ABC是等边三角形,OB=OC,
∴OA⊥BC,∠BAO=∠CAO=30°,
又∵∠BOD=60°,
∴∠AOD=90°-60°=30°,
∴∠AOD=∠OAD=30°,
∴OD=AD;
在Rt△ADE中,
∵DE=3,∠ADE=30°,
∴AD=
DE
cos30°
=2
3

∴OD=2
3

∴弧BD=
60×π•2
3
180
=
2
3
3
π.
点评:本题利用了等边三角形的判定和性质、切线的判定、等腰三角形三线合一定理、三角函数值、弧长计算公式、平角定义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC是边长为4的正三角形,AB在x轴上,点C在第一象限,AC与y轴交于点D,点A精英家教网的坐标为(-1,0).
(1)写出B,C,D三点的坐标;
(2)若抛物线y=ax2+bx+c经过B,C,D三点,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,
求证:△CMN是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄城区模拟)如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.
(1)求证:△BCE≌△FDC;
(2)判断四边形ABDF是怎样的四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•奉贤区二模)如图,已知△ABC是等边三角形,点D是BC延长线上的一个动点,以AD为边作等边△ADE,过点E作BC的平行线,分别交AB,AC的延长线于点F,G,联结BE.
(1)求证:△AEB≌△ADC;
(2)如果BC=CD,判断四边形BCGE的形状,并说明理由.

查看答案和解析>>

同步练习册答案