如图矩形abcd对角线相交于点o.be平行ac求证菱形答案解析
科目:czsx
来源:
题型:解答题
7.(1)如图1,在平行四边形ABCD中,对角线AC、BD相交于O点,过点O的直线l与边AB、CD分别交于点E、F,绕点O旋转直线l,猜想直线l旋转到什么位置时,四边形AECF是菱形.证明你的猜想.
(2)若将(1)中四边形ABCD改成矩形ABCD,使AB=4cm,BC=3cm,
①如图2,绕点O旋转直线l与边AB、CD分别交于点E、F,将矩形ABCD沿EF折叠,使点A与点C重合,点D的对应点为D′,连接DD′,求△DFD′的面积.
②如图3,绕点O继续旋转直线l,直线l与边BC或BC的延长线交于点E,连接AE,将矩形ABCD沿AE折叠,点B的对应点为B′,当△CEB′为直角三角形时,求BE的长度.请直接写出结果,不必写解答过程.
查看答案和解析>>
科目:czsx
来源:
题型:解答题
20.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.
①求证:四边形BFDE是菱形;
②直接写出∠EBF的度数.
(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;
(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.
查看答案和解析>>
科目:czsx
来源:
题型:解答题
19.我们给出如下定义:若一个四边形有一组对角互补(即对角之和为180°),则称这个四边形为圆满四边形.
(1)概念理解:在平行四边形、菱形、矩形、正方形中,你认为属于圆满四边形的有矩形,正方形.
(2)问题探究:如图,在四边形ABCD中,对角线AC、BD相交于点O,若∠ADB=∠ACB,问四边形ABCD是圆满四边形吗?请说明理由.小明经过思考后,判断四边形ABCD是圆满四边形,并提出了如下探究思路:先证明△AOD∽△BOC,得到比例式$\frac{OA}{OB}$=$\frac{OD}{OC}$,再证明△AOB∽△DOC,得出对应角相等,根据四边形内角和定理,得出一组对角互补.请你帮助小明写出解题过程.
(3)问题解决:请结合上述解题中所积累的经验和知识完成下题.如图,四边形ABCD中,AD⊥BD,AC⊥BC,AB与DC的延长线相交于点E,BE=BD,AB=5,AD=3,求CE的长.
查看答案和解析>>