精英家教网 > 试题搜索列表 >生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):

生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):答案解析

科目:czsx 来源: 题型:

生活中,有人喜欢把传送的便条折成精英家教网形状,折叠过程是这样的(阴影部分表示纸条的反面):
精英家教网
如果由信纸折成的长方形纸条(图①)长为25cm,宽为x cm,为了保证能折成图④的形状(即纸条两端均超出点P),那么x的取值范围是
 
cm.

查看答案和解析>>

科目:czsx 来源: 题型:

生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):
如果由信纸折成的长方形纸条(图①)长为26厘米,回答下列问题:
(1)如果长方形纸条的宽为2厘米,并且开始折叠时起点M与点A的距离为3厘米,那么在图②中,BM=
23
23
厘米;在图④中,BM=
15
15
厘米.
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是对称图形,假设长方形纸条的宽为x厘米,试求在开始折叠时(图①)起点M与点A的距离(用含x的代数式表示).

查看答案和解析>>

科目:czsx 来源: 题型:

生活中,有人喜欢把传送的便条折成形状精英家教网,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm,宽为xcm,分别回答下列问题:
(1)为了保证能折成图④的形状(即纸条两端均超出点P),试求x的取值范围;
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(用x表示).精英家教网

查看答案和解析>>

科目:czsx 来源: 题型:

5、生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为16 cm,宽为2cm,AM=4cm折成图4所示的图形并在其一面着色,则着色部分的面积为(  )

查看答案和解析>>

科目:czsx 来源: 题型:

生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为,宽为,分别回答下列问题:

(1)为了保证能折成图④的形状(即纸条两端均超出点),试求的取值范围.
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点与点的距离(用表示)

查看答案和解析>>

科目:czsx 来源: 题型:

生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):

 

如果由信纸折成的长方形纸条(图①)长为26厘米,回答下列问题:

(1)如果长方形纸条的宽为2厘米,并且开始折叠时起点M与点A的距离为3厘米,那么在图②中,BM=_____厘米;在图④中,BM=_____厘米.

(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是对称图形,假设长方形纸条的宽为厘米,试求在开始折叠时(图①)起点M与点A的距离(用含的代数式表示).

 

查看答案和解析>>

科目:czsx 来源:2014届江苏省无锡市七年级下学期期中考试数学卷(解析版) 题型:解答题

生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):

 

如果由信纸折成的长方形纸条(图①)长为26厘米,回答下列问题:

(1)如果长方形纸条的宽为2厘米,并且开始折叠时起点M与点A的距离为3厘米,那么在图②中,BM=_____厘米;在图④中,BM=_____厘米.

(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是对称图形,假设长方形纸条的宽为厘米,试求在开始折叠时(图①)起点M与点A的距离(用含的代数式表示).

 

查看答案和解析>>

科目:czsx 来源:2011-2012学年江苏省无锡市育才中学七年级下学期期中考试数学卷(带解析) 题型:解答题

生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):

如果由信纸折成的长方形纸条(图①)长为26厘米,回答下列问题:
(1)如果长方形纸条的宽为2厘米,并且开始折叠时起点M与点A的距离为3厘米,那么在图②中,BM=_____厘米;在图④中,BM=_____厘米.
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是对称图形,假设长方形纸条的宽为厘米,试求在开始折叠时(图①)起点M与点A的距离(用含的代数式表示).

查看答案和解析>>

科目:czsx 来源: 题型:

生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):

如果由信纸折成的长方形纸条(图①)长为26厘米,回答下列问题:
(1)如果长方形纸条的宽为2厘米,并且开始折叠时起点M与点A的距离为3厘米,那么在图②中,BM=_____厘米;在图④中,BM=_____厘米.
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是对称图形,假设长方形纸条的宽为厘米,试求在开始折叠时(图①)起点M与点A的距离(用含的代数式表示).

查看答案和解析>>

科目:czsx 来源:2011年广东省徐闻县第一中学初一第一学期期末考试数学卷 题型:解答题

生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为,宽为,分别回答下列问题:

(1)为了保证能折成图④的形状(即纸条两端均超出点),试求的取值范围.
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点与点的距离(用表示)

查看答案和解析>>

科目:czsx 来源:2007年山东省烟台市中考数学试卷(解析版) 题型:解答题

(2007•烟台)生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm,宽为xcm,分别回答下列问题:
(1)为了保证能折成图④的形状(即纸条两端均超出点P),试求x的取值范围;
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(用x表示).

查看答案和解析>>

科目:czsx 来源: 题型:解答题

生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm,宽为xcm,分别回答下列问题:
(1)为了保证能折成图④的形状(即纸条两端均超出点P),试求x的取值范围;
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(用x表示).

查看答案和解析>>

科目:czsx 来源:2007年烟台市初中毕业升学统一考试、数学试题 题型:059

生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):

如果由信纸折成的长方形纸条(图①)长为26 cm,宽为xcm,分别回答下列问题:

(1)为了保证能折成图④的形状(即纸条两端均超出点P),试求x的取值范围.

(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(用x表示).

查看答案和解析>>

科目:czsx 来源:浙江省期末题 题型:解答题

生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):
如果由信纸折成的长方形纸条(图①)长为26cm,宽为cm,分别回答下列问题:
 (1)为了保证能折成图④的形状(即纸条两端均超出点P),试求的取值范围;
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(用表示)。

查看答案和解析>>

科目:czsx 来源: 题型:

生活中,有人喜欢把传送的便条折成形状       ,折叠过程是这样的(阴影部分表示纸条的反面):

    如果由信纸折成的长方形纸条(图①)长为2 6 cm,宽为xcm,分别回答下列问题:

    (1)为了保证能折成图④的形状(即纸条两端均超出点P),试求x的取值范围.

(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(用x表示).

查看答案和解析>>

科目:czsx 来源:2007年全国中考数学试题汇编《图形的对称》(04)(解析版) 题型:解答题

(2007•烟台)生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm,宽为xcm,分别回答下列问题:
(1)为了保证能折成图④的形状(即纸条两端均超出点P),试求x的取值范围;
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(用x表示).

查看答案和解析>>

科目:czsx 来源: 题型:解答题

生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):
如果由信纸折成的长方形纸条(图①)长为26厘米,回答下列问题:
(1)如果长方形纸条的宽为2厘米,并且开始折叠时起点M与点A的距离为3厘米,那么在图②中,BM=______厘米;在图④中,BM=______厘米.
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是对称图形,假设长方形纸条的宽为x厘米,试求在开始折叠时(图①)起点M与点A的距离(用含x的代数式表示).

查看答案和解析>>

科目:czsx 来源:2009年河南省中招数学模拟试卷(6)(解析版) 题型:选择题

生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为16cm,宽为2cm,AM=4cm折成图4所示的图形并在其一面着色,则着色部分的面积为( )

A.8cm2
B.10cm2
C.12cm2
D.14cm2

查看答案和解析>>

科目:czsx 来源:2010-2011学年浙江省杭州市留下中学九年级(上)期末数学试卷(解析版) 题型:解答题

生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm,宽为xcm,分别回答下列问题:
(1)为了保证能折成图④的形状(即纸条两端均超出点P),试求x的取值范围;
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(用x表示).

查看答案和解析>>

科目:czsx 来源:第25章《图形的变换》中考题集(34):25.3 轴对称变换(解析版) 题型:解答题

生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26cm,宽为xcm,分别回答下列问题:
(1)为了保证能折成图④的形状(即纸条两端均超出点P),试求x的取值范围;
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(用x表示).

查看答案和解析>>