设x1<x2-<xn,n∈N且n≥2.{x|(x-x1)(x-x2)-(x-xn)>0}{x|x2-(x1+xn)闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙缁炬儳顭烽弻鏇熺箾閻愵剚鐝旂紒鐐劤閻忔繈鍩為幋锔藉亹鐎规洖娴傞弳锟犳⒑閹肩偛鈧洟鎮ц箛娑樼疅闁归棿鐒﹂崑瀣煕椤愶絿绠橀柣鐔村姂濮婅櫣绱掑Ο铏圭懆闂佽绻戝畝鍛婁繆閻㈢ǹ绀嬫い鏍ㄦ皑椤斿﹪姊虹憴鍕剹闁搞劑浜跺顐c偅閸愨晝鍘介柟鍏肩暘閸ㄥ宕弻銉︾厵闁告垯鍊栫€氾拷查看更多

 

题目列表(包括答案和解析)

设函数f(x)=-x3x2+(a2-1)x,其中a>0.

(1)若函数yf(x)在x=-1处取得极值,求a的值;

(2)已知函数f(x)有3个不同的零点,分别为0、x1x2,且x1<x2,若对任意的x∈[x1x2],f(x)>f(1)恒成立,求a的取值范围.

查看答案和解析>>

(本小题满分14分)已知定义在实数集上的函数fn(x)=xn,n∈N*,其导函数记为,且满足,a,x1,x2为常数,x1≠x2
(1)试求a的值;
(2)记函数,x∈(0,e],若F(x)的最小值为6,求实数b的值;
(3)对于(2)中的b,设函数,A(x1,y1),B(x2,y2)(x1<x2)是函数g(x)图象上两点,若,试判断x0,x1,x2的大小,并加以证明.

查看答案和解析>>

(09年莱阳一中学段检测)(14分)

      已知函数 (a>0且a1),其中为常数.如果

h(x)=f(x)+g(x)是增函数,且h(x)的导函数h (x)存在零点.

    (1)求a的值;

    (2)设A(x1、y1)、B(x2、y2)(x1 < x2)是函数y=g(x)的图象上两点, 

(g(x)为g(x)的导函数),证明:x1 < x0 < x2

查看答案和解析>>

(本题满分16分)已知二次函数f (x) = x2 ??ax + a (x∈R)同时满足:①不等式 f (x) ≤ 0的解集有且只有一个元素;②在定义域内存在0 < x1 < x2,使得不等式f (x1) > f (x2)成立.设数列{an}的前 n 项和Sn = f (n).(1)求函数f (x)的表达式;(2)求数列{an}的通项公式;(3)在各项均不为零的数列{cn}中,若ci·ci+1 < 0,则称cici+1为这个数列{cn}一对变号项.令cn = 1 ?? (n为正整数),求数列{cn}的变号项的对数.

查看答案和解析>>

函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时都有f(x1)≤f(x2),

则称函数f(x)在D上为非减函数,设f(x)在[0,1]上为非减函数,且满足以下条件:(1)

f(0)=0;(2)f()=f(x);(3)f(1-x)=1-f(x),则f()+f()=(    )

 

A.                           B.                     C.1                     D.

 

 

查看答案和解析>>


同步练习册答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷