方程=0所表示的图形是 A一条直线及一个圆 B两个点 C一条射线及一个圆 D两条射线及一个圆 查看更多

 

题目列表(包括答案和解析)

精英家教网设b>0,椭圆方程为
x2
2b2
+
y2
b2
=1
,抛物线方程为y=
1
8
x2+b
,如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G处的切线经过椭圆的右焦点F1
(1)求点G和点F1的坐标(用b表示);
(2)求满足条件的椭圆方程和抛物线方程;
(3)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

如图所示,在平面直角坐标系xOy上放置一个边长为1的正方形PABC,此正方形PABC沿x轴滚动(向左或向右均可),滚动开始时,点P位于原点处,设顶点P(x,y)的纵坐标与横坐标的函数关系是y=f(x),x∈R,该函数相邻两个零点之间的距离为m.
(1)写出m的值并求出当0≤x≤m时,点P运动路径的长度l;
(2)写出函数f(x),x∈[4k-2,4k+2],k∈Z的表达式;研究该函数的性质并填写下面表格:
函数性质结  论
奇偶性______
单调性递增区间______
递减区间______
零点______
(3)试讨论方程f(x)=a|x|在区间[-8,8]上根的个数及相应实数a的取值范围.

查看答案和解析>>

(2012•浦东新区一模)如图所示,在平面直角坐标系xOy上放置一个边长为1的正方形PABC,此正方形PABC沿x轴滚动(向左或向右均可),滚动开始时,点P位于原点处,设顶点P(x,y)的纵坐标与横坐标的函数关系是y=f(x),x∈R,该函数相邻两个零点之间的距离为m.
(1)写出m的值并求出当0≤x≤m时,点P运动路径的长度l;
(2)写出函数f(x),x∈[4k-2,4k+2],k∈Z的表达式;研究该函数的性质并填写下面表格:
函数性质 结  论
奇偶性
偶函数
偶函数
单调性 递增区间
[4k,4k+2],k∈z
[4k,4k+2],k∈z
递减区间
[4k-2,4k],k∈z
[4k-2,4k],k∈z
零点
x=4k,k∈z
x=4k,k∈z
(3)试讨论方程f(x)=a|x|在区间[-8,8]上根的个数及相应实数a的取值范围.

查看答案和解析>>


同步练习册答案