8. 如果函数对任意实数都有.试判断..的大小. 查看更多

 

题目列表(包括答案和解析)

函数f(x)=
a
x
+xlnx(a≠0),g(x)=x3-x2-3.
(Ⅰ)试判断函数g(x)在区间(0,2)上的单调性;
(Ⅱ)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;
(Ⅲ)如果对任意的x1,x2∈[
1
2
,2],都有f(x1)≥g(x2)成立,求实数a的取值范围.

查看答案和解析>>

设函数f(x)的定义域为R,当x<0时f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y).数列{an}满足
(Ⅰ)求f(0)的值,判断并证明函数f(x)的单调性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得点(t,as)、(s,at)都在直线y=kx-1上,试判断是否存在自然数M,当n>M时,an>0恒成立?若存在,求出M的最小值,若不存在,请说明理由;
(Ⅲ)若a1=f(0),不等式对不小于2的正整数恒成立,求x的取值范围.

查看答案和解析>>

定义在D上的函数,如果满足:存在常数M>0,对任意x∈D都有|f(x)|≤M成立,则称f(x)是D上的有界函数.
(1)试判断函数f(x)=2sin(x+
π
6
)+3
在实数集R上,函数g(x)=x3+
3
x
[
1
3
,3]
上是不是有界函数?若是,请给出证明;若不是,请说出理由.
(2)若已知某质点的运动距离S与时间t的关系为S(t)=
1
4
t4+3lnt-at
,要使在t∈[
1
3
,3]
上每一时刻的瞬时速度的绝对值都不大于13,求实数a的取值范围.

查看答案和解析>>

定义在D上的函数,如果满足:存在常数M>0,对任意x∈D都有|f(x)|≤M成立,则称f(x)是D上的有界函数.
(1)试判断函数f(x)=2sin(x+
π
6
)+3
在实数集R上,函数g(x)=x3+
3
x
[
1
3
,3]
上是不是有界函数?若是,请给出证明;若不是,请说出理由.
(2)若已知某质点的运动距离S与时间t的关系为S(t)=
1
4
t4+3lnt-at
,要使在t∈[
1
3
,3]
上每一时刻的瞬时速度的绝对值都不大于13,求实数a的取值范围.

查看答案和解析>>

定义在D上的函数,如果满足:存在常数M>0,对任意x∈D都有|f(x)|≤M成立,则称f(x)是D上的有界函数.
(1)试判断函数在实数集R上,函数上是不是有界函数?若是,请给出证明;若不是,请说出理由.
(2)若已知某质点的运动距离S与时间t的关系为,要使在上每一时刻的瞬时速度的绝对值都不大于13,求实数a的取值范围.

查看答案和解析>>


同步练习册答案
閸忥拷 闂傦拷