一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表: 轿车A 轿车B 轿车C 舒适型 100 150 z 标准型 300 450 600 按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆. (1)求z的值. (2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率; (3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率. 解 (1)设该厂本月生产轿车为n辆,由题意得,,所以n=2000. z=2000-100-300-150-450-600=400 (2)设所抽样本中有m辆舒适型轿车,因为用分层抽样的方法在C类轿车中抽取一个容量 为5的样本,所以,解得m=2也就是抽取了2辆舒适型轿车,3辆标准型轿车,分 别记作S1,S2;B1,B2,B3,则从中任取2辆的所有基本事件为(S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),(B1 ,B2), (B2 ,B3) ,(B1 ,B3)共10个,其中至少有1辆舒适型轿车的基本 事件有7个基本事件: (S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),所以从中任取 2辆,至少有1辆舒适型轿车的概率为. (3)样本的平均数为, 那么与样本平均数之差的绝对值不超过0.5的数为9.4, 8.6, 9.2, 8.7, 9.3, 9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为. [命题立意]本题为概率与统计的知识内容,涉及到分层抽样以及古典概型求事件的概率 问题.要读懂题意,分清类型,列出基本事件,查清个数.,利用公式解答. 查看更多

 

题目列表(包括答案和解析)

(2009山东卷文) (本小题满分14分)

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.

(1)求轨迹E的方程,并说明该方程所表示曲线的形状;      

(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;

(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>

 (2009山东卷文)在区间上随机取一个数x,的值介于0到之间的概率为(       ).

A.      B.      C.      D.      

查看答案和解析>>

(2009山东卷文)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“”是“”的(          )

A.充分不必要条件        B.必要不充分条件

C.充要条件              D.既不充分也不必要条件    

查看答案和解析>>

(2009山东卷文)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“”是“”的(          )

A.充分不必要条件        B.必要不充分条件

C.充要条件              D.既不充分也不必要条件    

查看答案和解析>>

(2009山东卷文)(本小题满分14分)

,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.

(1)求轨迹E的方程,并说明该方程所表示曲线的形状;   

(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;

(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

查看答案和解析>>


同步练习册答案