19.已知数列{an}的首项a1 = .前n项和Sn = n2an . ①求数列{an}的通项an, ②记b1 = 0.bn = .Tn为数列{bn}的前n项和. 求证:0≤. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)     已知函数.

(Ⅰ) 求f 1(x);

(Ⅱ) 若数列{an}的首项为a1=1,(nÎN+),求{an}的通项公式an

(Ⅲ)  设bn=(32n-8),求数列{bn}的前项和Tn

查看答案和解析>>

(本题满分12分)     已知函数.

(Ⅰ) 求f 1(x);

(Ⅱ) 若数列{an}的首项为a1=1,(nÎN+),求{an}的通项公式an

(Ⅲ) 设bn=an+12+an+22+¼+a2n+12,是否存在最小的正整数k,使对于任意nÎN+bn<成立. 若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

. (本题满分12分)已知函数.(Ⅰ) 求f –1(x);(Ⅱ) 若数列{an}的首项为a1=1,(n??N+),求{an}的通项公式an;(Ⅲ) 设bn=an+12+an+22+??+a2n+12,是否存在最小的正整数k,使对于任意n??N+bn<成立. 若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

(本小题满分12分)
已知等差数列{an}的首项,前n项和为Sn,且S4+a2=2S3;等比数列{bn}满足b1=a2,b2=a4
(1)若a1=2,设,求数列{cn}的前n项的和Tn
(2)在(1)的条件下,若有的最大值.

查看答案和解析>>

(本题满分12分)已知函数.(Ⅰ) 求f –1(x);(Ⅱ) 若数列{an}的首项为a1=1,(nÎN+),求{an}的通项公式an;(Ⅲ) 设bn=an+12+an+22+¼+a2n+12,是否存在最小的正整数k,使对于任意nÎN+bn<成立.若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>


同步练习册答案