函数在0≤x≤π上的最大值等于 ( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

(理)设函数f(x)=1+9x6tlnx,在x=a,x=b处分别取得极大值和极小值,连接函数图像上A(a,f(a)),B(b,f(b))两点.

(1)求实数t的取值范围;

(2)是否存在实数t,使得线段AB(包括两端点)与直线x=1相交?若存在,求出t的取值范围;若不存在,请说明理由.

(文)已知函数f(x)=mx3-x的图像上,以N(1,n)为切点的切线的倾斜角为

(1)求m,n的值;

(2)是否存在最小的正整数k,使得不等式f(x)≤k-1991对于x∈[-1,3]恒成?如果存在,请求出最小的正整数k;如果不存在,请说明理由。

(3)求证:|f(sinx)+f(cosx)|≤2f(t+)(x∈R,t>0).

查看答案和解析>>

函数f(x)=cos3x+sin2x-cosx在0≤x≤π上的最大值等于

[  ]

A.

B.

C.

D.

查看答案和解析>>

对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(1)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由.
第一组:数学公式
第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)设数学公式,生成函数h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求实数t的取值范围.
(3)设数学公式,取a>0,b>0生成函数h(x)图象的最低点坐标为(2,8).若对于任意正实数x1,x2且x1+x2=1,试问是否存在最大的常数m,使h(x1)h(x2)≥m恒成立?如果存在,求出这个m的值;如果不存在,请说明理由.

查看答案和解析>>

对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(1)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由.
第一组:
第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)设,生成函数h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求实数t的取值范围.
(3)设,取a>0,b>0生成函数h(x)图象的最低点坐标为(2,8).若对于任意正实数x1,x2且x1+x2=1,试问是否存在最大的常数m,使h(x1)h(x2)≥m恒成立?如果存在,求出这个m的值;如果不存在,请说明理由.

查看答案和解析>>

对于函数f1(x),f2(x),h(x),如果存在实数a,b使得h(x)=a•f1(x)+b•f2(x),那么称h(x)为f1(x),f2(x)的生成函数.
(1)下面给出两组函数,h(x)是否分别为f1(x),f2(x)的生成函数?并说明理由.
第一组:
第二组:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)设,生成函数h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求实数t的取值范围.
(3)设,取a>0,b>0生成函数h(x)图象的最低点坐标为(2,8).若对于任意正实数x1,x2且x1+x2=1,试问是否存在最大的常数m,使h(x1)h(x2)≥m恒成立?如果存在,求出这个m的值;如果不存在,请说明理由.

查看答案和解析>>


同步练习册答案