题目列表(包括答案和解析)
(本小题满分12分)
直三棱柱A1B1C1—ABC的三视图如图所示,D、E分别为棱CC1和B1C1的中点。
(1)求点B到平面A1C1CA的距离;
(2)求二面角B—A1D—A的余弦值;
(3)在AC上是否存在一点F,使EF⊥平面A1BD,若存在确定其位置,若不存在,说明理由.
(本小题满分13分)
如图7所示,在边长为12的正方形中,,且AB=3,BC=4,分别交BB1,CC1于点P、Q,将该正方形沿BB1、CC1折叠,使得与AA1重合,构成如图5所示的三棱柱ABC—A1B1C1,请在图5中解决下列问题:
(1)求证:;
(2)在底边AC上有一点M,满足AM:MC=3:4,求证:BM//平面APQ。
(3)求直线BC与平面APQ所成角的正弦值。
(本小题满分12分)
如图所示,在直三棱柱ABC—A1B1C1中,∠ABC=90°,BC=CC1,M、N分别为BB1、A1C1的中点.
(Ⅰ)求证:CB1⊥平面ABC1;
(Ⅱ)求证:MN//平面ABC1.
(本小题满分12分)如图,已知直三棱柱ABC—A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中点. (Ⅰ)求异面直线AB和C1D所成的角(用反三角函数表示);(Ⅱ)若E为AB上一点,试确定点E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的条件下,求点D到平面B1C1E的距离.
(本小题满分12分)如图所示,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,,AE∥CD,DC=AC=2AE=2.
(Ⅰ)求证:平面BCD平面ABC
(Ⅱ)求证:AF∥平面BDE;
(Ⅲ)求四面体B-CDE的体积.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com