题目列表(包括答案和解析)
文科(本小题满分14分)设函数。(Ⅰ)若函数在处与直线相切,①求实数,b的值;②求函数上的最大值;(Ⅱ)当时,若不等式对所有的都成立,求实数m的取值范围。)
(本小题满分12分)
某校高三文科分为四个班.高三数学调研测试后, 随机地在各班抽取部分学生进行
测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人.
抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5所示,其中120~130
(包括120分但不包括130分)的频率为0.05, 此分数段的人数为5人.
(1)问各班被抽取的学生人数各为多少人?
(2)在抽取的所有学生中,
任取一名学生, 求分数
不小于90分的概率.
(本小题满分12分)[来源:学科网ZXXK]
某校高三文科分为四个班.高三数学调研测试后,
随机地在各班抽取部分学生进行测试成绩统计,
各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人。
抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5所示,
其中120~130(包括120分但不包括130分)的频率为0.05,此 0
分数段的人数为5人
(1)问各班被抽取的学生人数各为多少人?
(2)在抽取的所有学生中,任取一名学生, 求分数不小(本小题满分12分)
(文科做)(本小题满分16分)
已知椭圆过点,离心率为,圆的圆心为坐标原点,直径为椭圆的短轴,圆的方程为.过圆上任一点作圆的切线,切点为.
(1)求椭圆的方程;
(2)若直线与圆的另一交点为,当弦最大时,求直线的直线方程;
(3)求的最值.
(本小题满分12分)(文科做前两问;理科全做.)
某会议室用3盏灯照明,每盏灯各使用节能灯棍一只,且型号相同.假定每盏灯能否正常照明只与灯棍的寿命有关,该型号的灯棍寿命为1年以上的概率为0.8,寿命为2年以上的概率为0.3,从使用之日起每满1年进行一次灯棍更换工作,只更换已坏的灯棍,平时不换.
(I)在第一次灯棍更换工作中,求不需要更换灯棍的概率;
(II)在第二次灯棍更换工作中,对其中的某一盏灯来说,求该灯需要更换灯棍的概率;
(III)设在第二次灯棍更换工作中,需要更换的灯棍数为ξ,求ξ的分布列和期望.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com