在映射f:A→B中.若B中的每一个元素都有原象.则称这样的映射为从A到B的满闂傚倷鑳堕崑銊╁磿婵犳碍鍤堢憸鐗堝笒閻掑灚銇勯幒鎴敾閻庢熬鎷�查看更多

 

题目列表(包括答案和解析)

16、定义:对于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一个元素都有原象,则称f:A→B为一一映射.如果存在对应关系φ,使A到B成为一一映射,则称A和B具有相同的势.给出下列命题:
①A={奇数},B={偶数},则A和B 具有相同的势;
②有两个同心圆,A是小圆上所有点形成的集合,B是大圆上所有点形成的集合,则A和B 不具有相同的势;
③A是B的真子集,则A和B不可能具有相同的势;
④若A和B具有相同的势,B和C具有相同的势,则A和C具有相同的势
其中真命题为
①④

查看答案和解析>>

定义:对于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一个元素都有原象,则称f:A→B为一一映射.如果存在对应关系φ,使A到B成为一一映射,则称A和B具有相同的势.给出下列命题:
①A={奇数},B={偶数},则A和B 具有相同的势;
②A是直角坐标系平面内所有点形成的集合,B是复数集,则A和B 不具有相同的势;
③若A={
a
b
},其中
a
b
是不共线向量,B={
c
|
c
a
b
共面的任意向量},则A和B不可能具有相同的势;
④若区间A=(-1,1),B=(-∞,+∞),则A和B具有相同的势.
其中真命题为
①③④
①③④

查看答案和解析>>

定义:对于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一个元素都有原象,则称f:A→B为一一映射.如果存在对应关系φ,使A到B成为一一映射,则称A和B具有相同的势.给出下列命题:
①A={奇数},B={偶数},则A和B 具有相同的势;
②有两个同心圆,A是小圆上所有点形成的集合,B是大圆上所有点形成的集合,则A和B 不具有相同的势;
③A是B的真子集,则A和B不可能具有相同的势;
④若A和B具有相同的势,B和C具有相同的势,则A和C具有相同的势
其中真命题为______.

查看答案和解析>>

定义:对于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一个元素都有原象,则称f:A→B为一一映射.如果存在对应关系φ,使A到B成为一一映射,则称A和B具有相同的势.给出下列命题:
①A={奇数},B={偶数},则A和B 具有相同的势;
②有两个同心圆,A是小圆上所有点形成的集合,B是大圆上所有点形成的集合,则A和B 不具有相同的势;
③A是B的真子集,则A和B不可能具有相同的势;
④若A和B具有相同的势,B和C具有相同的势,则A和C具有相同的势
其中真命题为   

查看答案和解析>>

定义:对于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一个元素都有原象,则称f:A→B为一一映射.如果存在对应关系φ,使A到B成为一一映射,则称A和B具有相同的势.给出下列命题:
①A={奇数},B={偶数},则A和B 具有相同的势;
②有两个同心圆,A是小圆上所有点形成的集合,B是大圆上所有点形成的集合,则A和B 不具有相同的势;
③A是B的真子集,则A和B不可能具有相同的势;
④若A和B具有相同的势,B和C具有相同的势,则A和C具有相同的势
其中真命题为   

查看答案和解析>>


同步练习册答案
闂傚倷鑳舵灙濡ょ姴绻橀獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磻婵犲洤绠柨鐕傛嫹