已知是正方形.平面..设点是棱上的动点.过点的平面交棱于点 (1)求证: (2)求二面角的大小(结果用反正弦函数值表示) (3)试确定点的位置.使平面.试说明理由 查看更多

 

题目列表(包括答案和解析)

已知直三棱柱中, , , 的交点, 若.

(1)求的长;  (2)求点到平面的距离;

(3)求二面角的平面角的正弦值的大小.

【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACCA为正方形, AC=3

第二问中,利用面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD=,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为

解法一: (1)连AC交AC于E, 易证ACCA为正方形, AC=3 ……………  5分

(2)在面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD= … 8分

(3) 易得AC面ACB, 过E作EHAB于H, 连HC, 则HCAB

CHE为二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小为 ……… 12分

解法二: (1)分别以直线CB、CC、CA为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h)  ……… 4分

·=0,  h=3

(2)设平面ABC得法向量=(a, b, c),则可求得=(3, 4, 0) (令a=3)

点A到平面ABC的距离为H=||=……… 8分

(3) 设平面ABC的法向量为=(x, y, z),则可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小满足cos== ………  11分

二面角C-AB-C的平面角的正弦大小为

 

查看答案和解析>>

(本题满分12分)如图,已知四棱锥的底面是正方形,⊥底面,且,点分别在侧棱上,且 

(Ⅰ)求证:⊥平面

(Ⅱ)若,求平面与平面的所成锐二面角的大小 

查看答案和解析>>

(本题满分12分)

在平面直角坐标系中,已知A1(-3,0),A2(3,0),P(x,y),M(,0),若实数λ使向量,λ满足λ2·(2=·

(1)求点P的轨迹方程,并判断P点的轨迹是怎样的曲线;

(2)当λ=时,过点A1且斜率为1的直线与此时(1)中的曲线相交的另一点为B,能否在直线x=-9上找一点C,使ΔA1BC为正三角形(请说明理由)。

查看答案和解析>>

(本题满分12分)

如图,已知四边形都是正方形,点E的中点,

(I)求证:平面BDE;

(II)求证:平面⊥平面BDE

查看答案和解析>>

(本题满分12分)

如图,已知四边形都是正方形,点E的中点,

(I)求证:平面BDE;

(II)求证:平面⊥平面BDE

查看答案和解析>>


同步练习册答案