题目列表(包括答案和解析)
已知函数f(x)=ax-lnx+1(a∈R),g(x)=xe1-x.
(Ⅰ)求函数g(x)在区间(0,e]上的值域;
(Ⅱ)是否存在实数a,对任意给定的x0∈(0,e],在区间[1,e]上都存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范围;若不存在,请说明理由;
(Ⅲ)
给出如下定义:对于函数y=F(x)图象上任意不同的两点A(x1,y1),B(x2,my2),如果对于函数y=F(x)图象上的点M(x0,y0)(其中总能使得F(x1)-f(x2)=(x0)(x1-x2)成立,则称函数具备性质“L”,试判断函数f(x)是不是具备性质“L”,并说明理由.π |
3 |
π |
3 |
3 |
1 |
8 |
2x | 3 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com