已知点F与直线l分别是双曲线x2-3y2=3的右焦点与右准线, 以F为左焦点 , l为左准线的椭圆C的中心为M, 又M关于直线y=2x的对称点M′恰好在已知双曲线的左准线上, 求椭圆C的方程及其离心率. 解:∵ F(2,0) , 再设P(x,y)在C上, 则由, 得(1-e2)x2+y2+(3e2-4)x+4-e2=0, 于是中心为 由条件得方程为x2+2y2-5x+=0, 即4x2+8y2-20x+23=0, 离心率 查看更多

 

题目列表(包括答案和解析)

已知点F是双曲线C:x2-y2=2的左焦点,直线l与双曲线C交于A、B两点,
(1)若直线l过点P(1,2),且,求直线l的方程.
(2)若直线l过点F且与双曲线的左右两支分别交于A、B两点,设,当λ∈[6,+∞)时,求直线l的斜率k的取值范围.

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1
x2
a2
+
y2
b2
=1
以抛物线y2=4
3
x
的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线x2=
1
mn
y
异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

已知点F是双曲线C:x2-y2=2的左焦点,直线l与双曲线C交于A、B两点,
(1)若直线l过点P(1,2),且
OA
+
OB
=2
OP
,求直线l的方程.
(2)若直线l过点F且与双曲线的左右两支分别交于A、B两点,设
FB
FA
,当λ∈[6,+∞)时,求直线l的斜率k的取值范围.

查看答案和解析>>

已知点F是双曲线C:x2-y2=2的左焦点,直线l与双曲线C交于A、B两点,
(1)若直线l过点P(1,2),且
OA
+
OB
=2
OP
,求直线l的方程.
(2)若直线l过点F且与双曲线的左右两支分别交于A、B两点,设
FB
FA
,当λ∈[6,+∞)时,求直线l的斜率k的取值范围.

查看答案和解析>>


同步练习册答案