5. 设A(1.1)和P分别是直线上的一个定点和一个动点.那么的最小值是 A. 闂傚倸鍊搁崐鐑芥嚄閸洖纾婚柕濞炬櫅绾惧灝鈹戦悩宕囶暡闁搞倕鐗忛幉鎼佹偋閸繄鐟ㄩ梺缁樺笒閻忔岸濡甸崟顖氱闁规惌鍨遍弫楣冩煟鎼淬垻鍟查柟鍑ゆ嫹查看更多

 

题目列表(包括答案和解析)

分别是椭圆的 左,右焦点。
(1)若P是该椭圆上一个动点,求的 最大值和最小值。
(2)设过定点M(0,2)的 直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l斜率k的取值范围。

查看答案和解析>>

分别是椭圆的 左,右焦点。
(1)若P是该椭圆上一个动点,求的 最大值和最小值。
(2)设过定点M(0,2)的 直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l斜率k的取值范围。

查看答案和解析>>

分别是椭圆的左、右焦点.,

(1)若P是该椭圆上的一个动点,求的最大值和最小值;

   (2)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

如图1,在平面内,ABCD是∠BAD=60°且AB=a的菱形,ADD''A1和CDD'C1都是正方形.将两个正方形分别沿AD,CD折起,使D''与D'重合于点D1.设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设BE=t(t>0)(图2).
(1)设二面角E-AC-D1的大小为q,若
π
4
≤θ≤
π
3
,求t的取值范围;
(2)在线段D1E上是否存在点P,使平面PA1C1∥平面EAC,若存在,求出P分
D1E
所成的比λ;若不存在,请说明理由.
精英家教网

查看答案和解析>>


同步练习册答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�