题目列表(包括答案和解析)
(本小题满分14分)对于定义在区间D上的函数,若存在闭区间和常数,使得对任意,都有,且对任意∈D,当时,恒成立,则称函数为区间D上的“平底型”函数.
(Ⅰ)判断函数和是否为R上的“平底型”函数? 并说明理由;
(Ⅱ)设是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式 对一切R恒成立,求实数的取值范围;
(Ⅲ)若函数是区间上的“平底型”函数,求和的值.
.
(本小题满分14分)已知定义在实数集上的函数 N,其导函数记为,且满足,其中、、为常数,.设函数R且.
(Ⅰ)求实数的值;
(Ⅱ)若函数无极值点,其导函数有零点,求m的值;
(Ⅲ)求函数在的图象上任一点处的切线斜率k的最大值.
(本小题满分14分)对于定义在区间D上的函数,若存在闭区间和常数,使得对任意,都有,且对任意∈D,当时,恒成立,则称函数为区间D上的“平底型”函数.
(Ⅰ)判断函数和是否为R上的“平底型”函数?并说明理由;
(Ⅱ)设是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式 对一切R恒成立,求实数的取值范围;
(Ⅲ)若函数是区间上的“平底型”函数,求和的值.
(本小题满分14分)设函数的定义域是R,对于任意实数,恒有,且当 时,.
(Ⅰ)若,求的值;(Ⅱ)求证:,且当时,有;
(Ⅲ)判断在R上的单调性,并加以证明.
(本小题满分14分)
已知函数
(Ⅰ)若时,函数在其定义域上是增函数,求b的取值范围;
(Ⅱ)在(Ⅰ)的结论下,设函数的最小值;
(Ⅲ)设函数的图象C1与函数的图象C2交于P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M、N,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com