过点p(0.4)作圆x2+y2=4的切线l.l与抛物线y2=2px交于两点A.B.若OA⊥OB.求p闂傚倸鍊搁崐鐑芥嚄閸洖纾婚柕濞炬櫅绾惧灝鈹戦悩宕囶暡闁搞倕鐗忛幉鎼佹偋閸繄鐟ㄩ梺缁樺笒閻忔岸濡甸崟顖氱闁规惌鍨遍弫楣冩煟鎼淬垻鍟查柟鍑ゆ嫹查看更多

 

题目列表(包括答案和解析)

过点P(0,4)作圆x2+y2=4的切线L,L与抛物线y2=2px(p>0)交于两点A、B,且以AB为直径的圆过原点O,求P的值.

查看答案和解析>>

过点P(0,4)作圆x2+y2=4的切线L,L与抛物线y2=2px(p>0)交于两点A、B,且以AB为直径的圆过原点O,求P的值.

查看答案和解析>>

过点Q (-2,
21
)
作圆O:x2+y2=r2(r>0)的切线,切点为D,且QD=4.
(1)求r的值;
(2)设P是圆O上位于第一象限内的任意一点,过点P作圆C的切线l,且l交x轴于点A,交y轴于点B,设
OK
=
OA
+
OB
,求|
OK
|
的最小值(O为坐标原点).
(3)从圆O外一点M(x1,y1)向该圆引一条切线,切点为T,N(2,3),且有|MT|=|MN|,求|MT|的最小值,并求此时点M的坐标.

查看答案和解析>>


同步练习册答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�