题目列表(包括答案和解析)
(本小题满分14分)
已知数列
,
满足
,其中
.
(Ⅰ)若
,求数列
的通项公式;
(Ⅱ)若
,且
.
(ⅰ)记
,求证:数列
为等差数列;
(ⅱ)若数列
中任意一项的值均未在该数列中重复出现无数次. 求
应满足的条件.
(本小题满分14分)已知数列
的前n项和
满足:
(a为常数,且
). (Ⅰ)求
的通项公式;
(Ⅱ)设
,若数列
为等比数列,求a的值;
(Ⅲ)在满足条件(Ⅱ)的情形下,设
,数列
的前n项和为Tn .
求证:
.
(本小题满分14分)已知数列
的前n项和
满足:
(a为常数,且
). (Ⅰ)求
的通项公式;
(Ⅱ)设
,若数列
为等比数列,求a的值;
(Ⅲ)在满足条件(Ⅱ)的情形下,设
,数列
的前n项和为Tn .
求证:
.
(本小题满分14分)
已知函数
,当
时,
取得极
小值
.
(1)求
,
的值;
(2)设直线
,曲线
.若直线![]()
与曲线
同时满足下列两个条件:
①直线
与曲线
相切且至少有两个
切点;
②对任意
都有
.则称直线
为曲线
的“上夹线”.
试证明:直线
是曲线
的“上夹线”.
(3)记
,设
是方程
的实数
根,若对于
定义域中任意的
、
,当
,且
时,问是否存在一个最小的正整数
,使得
恒成立,若存在请求出
的值;若不存在请说明理由.
(本小题满分14分)
已知数列
满足:
其中![]()
(1)当
时,求
的通项公式;
(2)在(1)的条件下,若数列
中,
且
求证:对于
恒成立;
(3)对于
设
的前
项和为
,试比较
与
的大小.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com