10.已知.那么 . 又若.那么 . 查看更多

 

题目列表(包括答案和解析)

如果以数列的任意连续三项作边长,都能构成一个三角形,那么称这样的数列为“三角形”数列;又对于“三角形”数列,如果函数y=f(x)使得由=f()()确定的数列仍成为一个“三角形”数列,就称y=f(x) 是数列的“保三角形”函数。

(Ⅰ)、已知数列是首项为2012,公比为的等比数列,求证:是“三角形”数列;

(Ⅱ)、已知数列是首项为2,公差为1的等差数列,若函数f(x)=  (m>0且m≠1)是的“保三角形”函数. 求m的取值范围.

 

查看答案和解析>>

如果以数列的任意连续三项作边长,都能构成一个三角形,那么称这样的数列为“三角形”数列;又对于“三角形”数列,如果函数y=f(x)使得由=f()()确定的数列仍成为一个“三角形”数列,就称y="f(x)" 是数列的“保三角形”函数。
(Ⅰ)、已知数列是首项为2012,公比为的等比数列,求证:是“三角形”数列;
(Ⅱ)、已知数列是首项为2,公差为1的等差数列,若函数f(x)= (m>0且m≠1)是的“保三角形”函数. 求m的取值范围.

查看答案和解析>>

已知,函数

(1)当时,求函数在点(1,)的切线方程;

(2)求函数在[-1,1]的极值;

(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。

【解析】本试题中导数在研究函数中的运用。(1)中,那么当时,  又    所以函数在点(1,)的切线方程为;(2)中令   有 

对a分类讨论,和得到极值。(3)中,设,依题意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  当时,  又    

∴  函数在点(1,)的切线方程为 --------4分

(Ⅱ)令   有 

①         当

(-1,0)

0

(0,

,1)

+

0

0

+

极大值

极小值

的极大值是,极小值是

②         当时,在(-1,0)上递增,在(0,1)上递减,则的极大值为,无极小值。 

综上所述   时,极大值为,无极小值

时  极大值是,极小值是        ----------8分

(Ⅲ)设

求导,得

    

在区间上为增函数,则

依题意,只需,即 

解得  (舍去)

则正实数的取值范围是(

 

查看答案和解析>>


同步练习册答案