题目列表(包括答案和解析)
(本小题满分14分) 椭圆C的中心为坐标原点O,焦点在y轴上,离心率e = ,椭圆上的点到焦点的最短距离为1-e, 直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且.(1)求椭圆方程; (2)若,求m的取值范围.
()(本小题满分14分)已知中心在原点、焦点在x轴的椭圆的离心率为,且过点(,). (Ⅰ)求椭圆E的方程;(Ⅱ)若A,B是椭圆E的左、右顶点,直线:()与椭圆E交于、两点,证明直线与直线的交点在垂直于轴的定直线上,并求出该直线方程.
(本小题满分14分)如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=.
(1)求椭圆C的标准方程;
(2)设点P为直线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.
(本小题满分14分) 已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;是过点P(0,2)且互相垂直的两条直线,交E于A,B两点,交E交C,D两点,AB,CD的中点分别为M,N。
(Ⅰ)求椭圆E的方程;
(Ⅱ)求k的取值范围;
(Ⅲ)求的取值范围。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com