由等式 定义.则等于 ( ) A. B. C. D.. 查看更多

 

题目列表(包括答案和解析)

对于定义在区间D上的函数f(x),若存在闭区间[a,b]⊆D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)>c恒成立,则称函数f(x)为区间D上的“平底型”函数.
(Ⅰ)判断函数f1(x)=|x-1|+|x-2|和f2(x)=x+|x-2|是否为R上的“平底型”函数?并说明理由;
(Ⅱ)设f(x)是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式|t-k|+|t+k|≥|k|•f(x)对一切t∈R恒成立,求实数x的取值范围;
(Ⅲ)若函数g(x)=mx+
x2+2x+n
是区间[-2,+∞)上的“平底型”函数,求m和n的值.

查看答案和解析>>

对于定义域为的函数,若有常数M,使得对任意的,存在唯一的满足等式,则称M为函数f (x)的“均值”.
(1)判断1是否为函数的“均值”,请说明理由;
(2)若函数为常数)存在“均值”,求实数a的取值范围;
(3)若函数是单调函数,且其值域为区间I.试探究函数的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).
说明:对于(3),将根据结论的完整性与一般性程度给予不同的评分

查看答案和解析>>

对于定义域为的函数,若有常数M,使得对任意的,存在唯一的满足等式,则称M为函数f (x)的“均值”.

(1)判断1是否为函数的“均值”,请说明理由;

(2)若函数为常数)存在“均值”,求实数a的取值范围;

(3)若函数是单调函数,且其值域为区间I.试探究函数的“均值”情况(是否存在、个数、大小等)与区间I之间的关系,写出你的结论(不必证明).

说明:对于(3),将根据结论的完整性与一般性程度给予不同的评分

 

查看答案和解析>>

对于定义在区间D上的函数f(x),若存在闭区间[a,b]⊆D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)>c恒成立,则称函数f(x)为区间D上的“平底型”函数.
(Ⅰ)判断函数f1(x)=|x-1|+|x-2|和f2(x)=x+|x-2|是否为R上的“平底型”函数?并说明理由;
(Ⅱ)设f(x)是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式|t-k|+|t+k|≥|k|•f(x)对一切t∈R恒成立,求实数x的取值范围;
(Ⅲ)若函数数学公式是区间[-2,+∞)上的“平底型”函数,求m和n的值.

查看答案和解析>>

对于定义在区间D上的函数f(x),若存在闭区间[a,b]⊆D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)>c恒成立,则称函数f(x)为区间D上的“平底型”函数.
(Ⅰ)判断函数f1(x)=|x-1|+|x-2|和f2(x)=x+|x-2|是否为R上的“平底型”函数?并说明理由;
(Ⅱ)设f(x)是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式|t-k|+|t+k|≥|k|•f(x)对一切t∈R恒成立,求实数x的取值范围;
(Ⅲ)若函数是区间[-2,+∞)上的“平底型”函数,求m和n的值.

查看答案和解析>>


同步练习册答案