·ÖÎö£º£¨1£©¶ÔÓÚº¯Êýf
1£¨x£©=|x-1|+|x-2|£¬ÓûÅжÏÆäÊÇ·ñÊÇ¡°Æ½µ×ÐÍ¡±º¯Êý£¬Ö»Ðëf
1£¨x£©£¾=1ÊÇ·ñºã³ÉÁ¢£¬ÀûÓÃÈ¥¾ø¶ÔÖµ·ûºÅºó¼´¿ÉÖ¤µÃ£»Í¬Àí£¬¶ÔÓÚº¯Êýf
2£¨x£©=x+|x-2|£¬Ò²ÊÇÈç´ËÑéÖ¤£®
£¨¢ò£©Èô|t-k|+|t+k|¡Ý|k|•f£¨x£©¶ÔÒ»ÇÐt¡ÊRºã³ÉÁ¢£¬Ôò£¨|t-k|+|t+k|£©
min¡Ý|k|•f£¨x£©£®¹ÊÖ»Ðë2|k|¡Ý|k|•f£¨x£©Ò²¼´f£¨x£©¡Ü2×îºó¼´¿É½â³öʵÊýxµÄ·¶Î§£®£¨¢ó£©ÒòΪº¯Êý
g(x)=mx+ÊÇÇø¼ä[-2£¬+¡Þ£©Éϵġ°Æ½µ×ÐÍ¡±º¯Êý£¬Ôò´æÔÚÇø¼ä[a£¬b]⊆[-2£¬+¡Þ£©ºÍ³£Êýc£¬Ê¹µÃ
mx+=cºã³ÉÁ¢£®
ËùÒÔx
2+2x+n=£¨mx-c£©
2ºã³ÉÁ¢£¬µÃµ½¹ØÓÚm£¬n£¬cµÄ·½³Ì£¬½â³öËüÃǵÄÖµ£¬×îºóͨ¹ýÑéÖ¤g£¨x£©ÊÇÇø¼ä[-2£¬+¡Þ£©Éϵġ°Æ½µ×ÐÍ¡±º¯Êý¼´¿É½â¾öÎÊÌ⣮
½â´ð£º½â£º£¨1£©¶ÔÓÚº¯Êýf
1£¨x£©=|x-1|+|x-2|£¬µ±x¡Ê[1£¬2]ʱ£¬f
1£¨x£©=1£®
µ±x£¼1»òx£¾2ʱ£¬f
1£¨x£©£¾|£¨x-1£©-£¨x-2£©|=1ºã³ÉÁ¢£¬¹Êf
1£¨x£©ÊÇ¡°Æ½µ×ÐÍ¡±º¯Êý£®£¨2·Ö£©
¶ÔÓÚº¯Êýf
2£¨x£©=x+|x-2|£¬µ±x¡Ê£¨-¡Þ£¬2]ʱ£¬f
2£¨x£©=2£»µ±x¡Ê£¨2£¬+¡Þ£©Ê±£¬f
2£¨x£©=2x-2£¾2£¬ËùÒÔ²»´æÔÚ±ÕÇø¼ä[a£¬b]£¬Ê¹µ±x∉[a£¬b]ʱ£¬f£¨x£©£¾2ºã³ÉÁ¢£®
¹Êf
2£¨x£©²»ÊÇ¡°Æ½µ×ÐÍ¡±º¯Êý£®£¨4·Ö£©
£¨¢ò£©Èô|t-k|+|t+k|¡Ý|k|•f£¨x£©¶ÔÒ»ÇÐt¡ÊRºã³ÉÁ¢£¬Ôò£¨|t-k|+|t+k|£©
min¡Ý|k|•f£¨x£©£®
ÒòΪ£¨|t-k|+|t+k|£©
min=2|k|£¬ËùÒÔ2|k|¡Ý|k|•f£¨x£©£®ÓÖk¡Ù0£¬Ôòf£¨x£©¡Ü2£®£¨6·Ö£©
ÒòΪf£¨x£©=|x-1|+|x-2|£¬Ôò|x-1|+|x-2|¡Ü2£¬½âµÃ
¡Üx¡Ü£®
¹ÊʵÊýxµÄ·¶Î§ÊÇ
[£¬]£®£¨8·Ö£©
£¨¢ó£©ÒòΪº¯Êý
g(x)=mx+ÊÇÇø¼ä[-2£¬+¡Þ£©Éϵġ°Æ½µ×ÐÍ¡±º¯Êý£¬Ôò
´æÔÚÇø¼ä[a£¬b]⊆[-2£¬+¡Þ£©ºÍ³£Êýc£¬Ê¹µÃ
mx+=cºã³ÉÁ¢£®
ËùÒÔx
2+2x+n=£¨mx-c£©
2ºã³ÉÁ¢£¬¼´
£®½âµÃ
»ò
£®£¨10·Ö£©
µ±
ʱ£¬g£¨x£©=x+|x+1|£®
µ±x¡Ê[-2£¬-1]ʱ£¬g£¨x£©=-1£¬µ±x¡Ê£¨-1£¬+¡Þ£©Ê±£¬g£¨x£©=2x+1£¾-1ºã³ÉÁ¢£®
´Ëʱ£¬g£¨x£©ÊÇÇø¼ä[-2£¬+¡Þ£©Éϵġ°Æ½µ×ÐÍ¡±º¯Êý£®£¨11·Ö£©
µ±
ʱ£¬g£¨x£©=-x+|x+1|£®
µ±x¡Ê[-2£¬-1]ʱ£¬g£¨x£©=-2x-1¡Ý1£¬µ±x¡Ê£¨-1£¬+¡Þ£©Ê±£¬g£¨x£©=1£®
´Ëʱ£¬g£¨x£©²»ÊÇÇø¼ä[-2£¬+¡Þ£©Éϵġ°Æ½µ×ÐÍ¡±º¯Êý£®£¨12·Ö£©
×ÛÉÏ·ÖÎö£¬m=1£¬n=1ΪËùÇ󣮣¨13·Ö£©