¶ÔÓÚ¶¨ÒåÔÚÇø¼äDÉϵĺ¯Êýf£¨x£©£¬Èô´æÔÚ±ÕÇø¼ä[a£¬b]⊆DºÍ³£Êýc£¬Ê¹µÃ¶ÔÈÎÒâx1¡Ê[a£¬b]£¬¶¼ÓÐf£¨x1£©=c£¬ÇÒ¶ÔÈÎÒâx2¡ÊD£¬µ±x2∉[a£¬b]ʱ£¬f£¨x2£©£¾cºã³ÉÁ¢£¬Ôò³Æº¯Êýf£¨x£©ÎªÇø¼äDÉϵġ°Æ½µ×ÐÍ¡±º¯Êý£®
£¨¢ñ£©ÅжϺ¯Êýf1£¨x£©=|x-1|+|x-2|ºÍf2£¨x£©=x+|x-2|ÊÇ·ñΪRÉϵġ°Æ½µ×ÐÍ¡±º¯Êý£¿²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©Éèf£¨x£©ÊÇ£¨¢ñ£©Öеġ°Æ½µ×ÐÍ¡±º¯Êý£¬kΪ·ÇÁã³£Êý£¬Èô²»µÈʽ|t-k|+|t+k|¡Ý|k|•f£¨x£©¶ÔÒ»ÇÐt¡ÊRºã³ÉÁ¢£¬ÇóʵÊýxµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©Èôº¯Êýg(x)=mx+
x2+2x+n
ÊÇÇø¼ä[-2£¬+¡Þ£©Éϵġ°Æ½µ×ÐÍ¡±º¯Êý£¬ÇómºÍnµÄÖµ£®
·ÖÎö£º£¨1£©¶ÔÓÚº¯Êýf1£¨x£©=|x-1|+|x-2|£¬ÓûÅжÏÆäÊÇ·ñÊÇ¡°Æ½µ×ÐÍ¡±º¯Êý£¬Ö»Ðëf1£¨x£©£¾=1ÊÇ·ñºã³ÉÁ¢£¬ÀûÓÃÈ¥¾ø¶ÔÖµ·ûºÅºó¼´¿ÉÖ¤µÃ£»Í¬Àí£¬¶ÔÓÚº¯Êýf2£¨x£©=x+|x-2|£¬Ò²ÊÇÈç´ËÑéÖ¤£®
£¨¢ò£©Èô|t-k|+|t+k|¡Ý|k|•f£¨x£©¶ÔÒ»ÇÐt¡ÊRºã³ÉÁ¢£¬Ôò£¨|t-k|+|t+k|£©min¡Ý|k|•f£¨x£©£®¹ÊÖ»Ðë2|k|¡Ý|k|•f£¨x£©Ò²¼´f£¨x£©¡Ü2×îºó¼´¿É½â³öʵÊýxµÄ·¶Î§£®£¨¢ó£©ÒòΪº¯Êýg(x)=mx+
x2+2x+n
ÊÇÇø¼ä[-2£¬+¡Þ£©Éϵġ°Æ½µ×ÐÍ¡±º¯Êý£¬Ôò´æÔÚÇø¼ä[a£¬b]⊆[-2£¬+¡Þ£©ºÍ³£Êýc£¬Ê¹µÃmx+
x2+2x+n
=c
ºã³ÉÁ¢£®
ËùÒÔx2+2x+n=£¨mx-c£©2ºã³ÉÁ¢£¬µÃµ½¹ØÓÚm£¬n£¬cµÄ·½³Ì£¬½â³öËüÃǵÄÖµ£¬×îºóͨ¹ýÑéÖ¤g£¨x£©ÊÇÇø¼ä[-2£¬+¡Þ£©Éϵġ°Æ½µ×ÐÍ¡±º¯Êý¼´¿É½â¾öÎÊÌ⣮
½â´ð£º½â£º£¨1£©¶ÔÓÚº¯Êýf1£¨x£©=|x-1|+|x-2|£¬µ±x¡Ê[1£¬2]ʱ£¬f1£¨x£©=1£®
µ±x£¼1»òx£¾2ʱ£¬f1£¨x£©£¾|£¨x-1£©-£¨x-2£©|=1ºã³ÉÁ¢£¬¹Êf1£¨x£©ÊÇ¡°Æ½µ×ÐÍ¡±º¯Êý£®£¨2·Ö£©
¶ÔÓÚº¯Êýf2£¨x£©=x+|x-2|£¬µ±x¡Ê£¨-¡Þ£¬2]ʱ£¬f2£¨x£©=2£»µ±x¡Ê£¨2£¬+¡Þ£©Ê±£¬f2£¨x£©=2x-2£¾2£¬ËùÒÔ²»´æÔÚ±ÕÇø¼ä[a£¬b]£¬Ê¹µ±x∉[a£¬b]ʱ£¬f£¨x£©£¾2ºã³ÉÁ¢£®
¹Êf2£¨x£©²»ÊÇ¡°Æ½µ×ÐÍ¡±º¯Êý£®£¨4·Ö£©
£¨¢ò£©Èô|t-k|+|t+k|¡Ý|k|•f£¨x£©¶ÔÒ»ÇÐt¡ÊRºã³ÉÁ¢£¬Ôò£¨|t-k|+|t+k|£©min¡Ý|k|•f£¨x£©£®
ÒòΪ£¨|t-k|+|t+k|£©min=2|k|£¬ËùÒÔ2|k|¡Ý|k|•f£¨x£©£®ÓÖk¡Ù0£¬Ôòf£¨x£©¡Ü2£®£¨6·Ö£©
ÒòΪf£¨x£©=|x-1|+|x-2|£¬Ôò|x-1|+|x-2|¡Ü2£¬½âµÃ
1
2
¡Üx¡Ü
5
2
£®
¹ÊʵÊýxµÄ·¶Î§ÊÇ[
1
2
£¬
5
2
]
£®£¨8·Ö£©
£¨¢ó£©ÒòΪº¯Êýg(x)=mx+
x2+2x+n
ÊÇÇø¼ä[-2£¬+¡Þ£©Éϵġ°Æ½µ×ÐÍ¡±º¯Êý£¬Ôò
´æÔÚÇø¼ä[a£¬b]⊆[-2£¬+¡Þ£©ºÍ³£Êýc£¬Ê¹µÃmx+
x2+2x+n
=c
ºã³ÉÁ¢£®
ËùÒÔx2+2x+n=£¨mx-c£©2ºã³ÉÁ¢£¬¼´
m2=1
-2mc=2
c2=n
£®½âµÃ
m=1
c=-1
n=1
»ò
m=-1
c=1
n=1
£®£¨10·Ö£©
µ±
m=1
c=-1
n=1
ʱ£¬g£¨x£©=x+|x+1|£®
µ±x¡Ê[-2£¬-1]ʱ£¬g£¨x£©=-1£¬µ±x¡Ê£¨-1£¬+¡Þ£©Ê±£¬g£¨x£©=2x+1£¾-1ºã³ÉÁ¢£®
´Ëʱ£¬g£¨x£©ÊÇÇø¼ä[-2£¬+¡Þ£©Éϵġ°Æ½µ×ÐÍ¡±º¯Êý£®£¨11·Ö£©
µ±
m=-1
c=1
n=1
ʱ£¬g£¨x£©=-x+|x+1|£®
µ±x¡Ê[-2£¬-1]ʱ£¬g£¨x£©=-2x-1¡Ý1£¬µ±x¡Ê£¨-1£¬+¡Þ£©Ê±£¬g£¨x£©=1£®
´Ëʱ£¬g£¨x£©²»ÊÇÇø¼ä[-2£¬+¡Þ£©Éϵġ°Æ½µ×ÐÍ¡±º¯Êý£®£¨12·Ö£©
×ÛÉÏ·ÖÎö£¬m=1£¬n=1ΪËùÇ󣮣¨13·Ö£©
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²éº¯ÊýµÄ¸ÅÄî¼°Æä¹¹³ÉÒªËØ¡¢²»µÈʽµÄ½â·¨¡¢º¯Êýºã³ÉÁ¢ÎÊÌâµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ï룮ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•³É¶¼¶þÄ££©¶ÔÓÚ¶¨ÒåÔÚÇø¼äDÉϵĺ¯Êýf£¨x£©£¬ÈôÂú×ã¶Ô?x1£¬x2¡ÊD£¬ÇÒx1£¼x2ʱ¶¼ÓРf£¨x1£©¡Ýf£¨x2£©£¬Ôò³Æº¯Êýf£¨x£©ÎªÇø¼äDÉϵġ°·ÇÔöº¯Êý¡±£®Èôf£¨x£©ÎªÇø¼ä[0£¬1]Éϵġ°·ÇÔöº¯Êý¡±ÇÒf£¨0£©=l£¬f£¨x£©+f£¨l-x£©=l£¬ÓÖµ±x¡Ê[0£¬
1
4
]
ʱ£¬f£¨x£©¡Ü-2x+1ºã³ÉÁ¢£®ÓÐÏÂÁÐÃüÌ⣺
¢Ù?x¡Ê[0£¬1]£¬f£¨x£©¡Ý0£»
¢Úµ±x1£¬x2¡Ê[0£¬1]ÇÒx1¡Ùx2£¬Ê±£¬f£¨x1£©¡Ùf£¨x£©
¢Û?x¡Ê[
1
4
£¬
3
4
]
ʱ£¬¶¼ÓÐf(x)=
1
2

¢Üº¯Êýf£¨x£©µÄͼÏó¹ØÓÚµã(
1
2
£¬
1
2
)
¶Ô³Æ
ÆäÖÐÄãÈÏΪÕýÈ·µÄËùÓÐÃüÌâµÄÐòºÅΪ
¢Ù¢Û¢Ü
¢Ù¢Û¢Ü
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÑγÇһģ£©¶ÔÓÚ¶¨ÒåÔÚÇø¼äDÉϵĺ¯Êýf£¨x£©£¬ÈôÈθøx0¡ÊD£¬¾ùÓÐf£¨x0£©¡ÊD£¬Ôò³Æº¯Êýf£¨x£©ÔÚÇø¼äDÉÏ·â±Õ£®
£¨1£©ÊÔÅжÏf£¨x£©=x-1ÔÚÇø¼ä[-2.1]ÉÏÊÇ·ñ·â±Õ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨1£©Èôº¯Êýg£¨x£©=
3x+ax+1
ÔÚÇø¼ä[3£¬10]ÉÏ·â±Õ£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨1£©Èôº¯Êýh£¨x£©=x3-3xÔÚÇø¼ä[a£¬b[£¨a£¬b¡ÊZ£©ÉÏ·â±Õ£¬Çóa£¬bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÃàÑôÈýÄ££©¶ÔÓÚ¶¨ÒåÔÚÇø¼äDÉϵĺ¯Êýf£¨X£©£¬Èô´æÔÚ±ÕÇø¼ä[a£¬b]?DºÍ³£Êýc£¬£®Ê¹µÃ¶ÔÈÎÒâx1¡Ê[a£¬b]£¬¶¼ÓÐf£¨x1£©=c£¬ÇÒ¶ÔÈÎÒâx2¡ÊD£¬µ±x2∉[a£¬b]ʱ£¬f£¨x2£©£¼cºã³ÉÁ¢£¬Ôò³Æº¯Êýf£¨X£©ÎªÇø¼äDÉϵġ°Æ½¶¥ÐÍ¡±º¯Êý£®¸ø³öÏÂÁÐ˵·¨£º
¢Ù¡°Æ½¶¥ÐÍ¡±º¯ÊýÔÚ¶¨ÒåÓòÄÚÓÐ×î´óÖµ£»
¢Ú¡°Æ½¶¥ÐÍ¡±º¯ÊýÔÚ¶¨ÒåÓòÄÚÒ»¶¨Ã»ÓÐ×îСֵ£»
¢Ûº¯Êýf£¨x£©=-|x+2|-|x-1|ΪRÉϵġ°Æ½¶¥ÐÍ¡±º¯Êý£»
¢Üº¯Êýf£¨x£©=sinx-|sinx|ΪRÉϵġ°Æ½¶¥ÐÍ¡±º¯Êý£®
ÔòÒÔÉÏ˵·¨ÖÐÕýÈ·µÄÊÇ
¢Ù¢Û
¢Ù¢Û
£®£¨ÌîÉÏÄãÈÏΪÕýÈ·½áÂÛµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÃàÑôÈýÄ££©¶ÔÓÚ¶¨ÒåÔÚÇø¼äDÉϵĺ¯Êýf£¨X£©£¬Èô´æÔÚ±ÕÇø¼ä[a£¬b]?DºÍ³£Êýc£¬Ê¹µÃ¶ÔÈÎÒâx1¡Ê[a£¬b]£¬¶¼ÓÐf£¨x1£©=c£¬ÇÒ¶ÔÈÎÒâx2¡ÊD£¬µ±x2∉[a£¬b]ʱ£¬f£¨x2£©£¼cºã³ÉÁ¢£¬Ôò³Æº¯Êýf£¨x£©ÎªÇø¼äDÉϵġ°Æ½¶¥ÐÍ¡±º¯Êý£®¸ø³öÏÂÁÐ˵·¨£º
¢Ù¡°Æ½¶¥ÐÍ¡±º¯ÊýÔÚ¶¨ÒåÓòÄÚÓÐ×î´óÖµ£»
¢Úº¯Êýf£¨x£©=x-|x-2|ΪRÉϵġ°Æ½¶¥ÐÍ¡±º¯Êý£»
¢Ûº¯Êýf£¨x£©=sinx-|sinx|ΪRÉϵġ°Æ½¶¥ÐÍ¡±º¯Êý£»
¢Üµ±t¡Ü
3
4
ʱ£¬º¯Êý£¬f(x)=
2£¬(x¡Ü1)
log
1
2
(x-t)£¬(x£¾1)
ÊÇÇø¼ä[0£¬+¡Þ£©Éϵġ°Æ½¶¥ÐÍ¡±º¯Êý£®
ÆäÖÐÕýÈ·µÄÊÇ
¢Ù¢Ú¢Ü
¢Ù¢Ú¢Ü
£®£¨ÌîÉÏÄãÈÏΪÕýÈ·½áÂÛµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸