设函数是奇函数.且 (1)求的值, (2)判断并证明在上的单调性. 挑战高考 查看更多

 

题目列表(包括答案和解析)

设函数是定义域为R的奇函数.

(1)求k值;

(2)(文)当时,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集;

(理)若f(1)<0,试判断函数单调性并求使不等式恒成立的的取值范围;

(3)若f(1)=,且g(x)=a 2xa - 2x-2m f(x) 在[1,+∞)上的最小值为-2,求m的值.

查看答案和解析>>

设函数是定义域为R的奇函数.

(1)求k值;

(2)(文)当时,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集;

(理)若f(1)<0,试判断函数单调性并求使不等式恒成立的的取值范围;

(3)若f(1)=,且g(x)=a 2xa - 2x-2m f(x) 在[1,+∞)上的最小值为-2,求m的值.

查看答案和解析>>

设函数y=f(x)满足:对任意x∈R都有f(x)>0,且f(x+y)=f(x)•f(y)(x,y∈R)
(1)求f(0)的值;
(2)求f(x)•f(-x)的值;
(3)判断函数g(x)=
1+f(x)1-f(x)
是否具有奇偶性,并证明你的结论.

查看答案和解析>>

设函数f(x)在(-3,3)上是奇函数,且对任意x,y都有f(x)-f(y)=f(x-y),当x<0时,f(x)>0,f(1)=-2
(1)求f(2)的值;
(2)判断f(x)的单调性,并证明;
(3)若函数g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.

查看答案和解析>>

设函数y=f(x)是定义域在R,并且满足f(x+y)=f(x)+f(y),f(
13
)=1
,且当x>0时,f(x)>0.
(1)求f(0)的值;                
(2)判断函数的奇偶性;
(3)试判断函数的单调性,并求解不等式f(x)+f(2+x)<2.

查看答案和解析>>


同步练习册答案