向量满足条件.. 求证是等边三角形. 查看更多

 

题目列表(包括答案和解析)

(1)设
a
b
,是两个非零向量,如果(
a
-3
b
)⊥(7
a
+5
b
)
,且(
a
+4
b
)⊥(7
a
+2
b
)
,求向量
a
b
的夹角大小;
(2)用向量方法证明:设平面上A,B,C,D四点满足条件AD⊥BC,BD⊥AC,则AB⊥CD.

查看答案和解析>>

已知椭圆E的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,长轴是短轴的2倍,且椭圆E过点(
2
2
2
)
;斜率为k(k>0)的直线l过点A(0,2),
n
为直线l的一个法向量,坐标平面上的点B满足条件|
n
AB
|=|
n
|

(1)写出椭圆E方程,并求点B到直线l的距离;
(2)若椭圆E上恰好存在3个这样的点B,求k的值.

查看答案和解析>>

已知:
a
=(3,2),
b
=(-1,2),
c
=(4,1)

(1)求|3
a
+
b
-
c
|

(2)求满足条件
a
=m
b
+n
c
的实数m,n.
(3)若向量
d
满足(
d
-
c
)∥(
a
+
b
)
,且|
d
-
c
|=1
d

查看答案和解析>>

已知直线l过点(1,
178
)且它的一个方向向量为(4,-7),又圆C1:(x+3)2+(y-1)2=4与圆C2关于直线l对称.
(Ⅰ)求直线l和圆C2的方程;
(Ⅱ)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试示所有满足条件的点P的坐标.

查看答案和解析>>

在平面直角坐标系xOy中,已知点A(-1,0)、B(1,0),动点C满足条件:△ABC的周长为2+2
2
.记动点C的轨迹为曲线W.
(Ⅰ)求W的方程;
(Ⅱ)经过点(0,
2
)且斜率为k的直线l与曲线W有两个不同的交点P和Q,求k的取值范围;
(Ⅲ)已知点M(
2
,0
),N(0,1),在(Ⅱ)的条件下,是否存在常数k,使得向量
OP
+
OQ
MN
共线?如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>


同步练习册答案