题目列表(包括答案和解析)
(本题满分12分)设函数f(x)=a·b,其中向量a=(2cosx,1),b=(cosx,sin2x+m).
(1)求函数f(x)的最小正周期和在[0,π]上的单调递增区间.
(2)当x∈时,-4<f(x)<4恒成立,求实数m的取值范围.
本小题满分12分)
已知函数f(x)=lnx-ax2+(2-a)x.
(I)讨论f(x)的单调性;
(II)设a>0,证明:当0<x<时,f(+x)>f(-x);
(III)若函数y=f(x)的图像与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f’( x0)<0.
(本小题满分12分已知二次函数f(x) 对任意x∈R,都有f (1-x)=f (1+x)成立,设向量a=(sinx,2), b=(2sinx,),
c=(cos2x,1),d=(1,2)。
(1)分别求a·b和c·d的取值范围;
(2)当x∈[0,π]时,求不等式f(a·b)>f(c·d)的解集.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com