题目列表(包括答案和解析)
已知函数=+有如下性质:如果常数>0,那么该函数在0,上是减函数,在,+∞上是增函数.
(Ⅰ)如果函数=+(>0)的值域为6,+∞,求的值;
(Ⅱ)研究函数=+(常数>0)在定义域内的单调性,并说明理由;
(Ⅲ)对函数=+和=+(常数>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数(是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).
已知函数y=x+有如下性质:如果常数a>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.
(1)如果函数y=x+(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+(常数c>0)在定义域内的单调性,并说明理由;
(3)对函数y=x+和y=x2+(常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),
已知函数y=x+有如下性质:如果常数a>0,那么该函数在(0,]上为减函数,在[,+∞)上是增函数.
(1)如果函数y=x+在(0,4]上是减函数.在[4,+∞)上是增函数,求实常数b的值;
(2)设常数c∈[1,4],求函数f(x)=x+,x∈[1,2]的最大值和最小值;
(3)当n是正整数时,研究函数y(x)=xn+(c>0)的单调性,并说明理由.
已知函数y=x+有如下性质:如果常数a>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.
(1)如果函数y=x+(x>0)在(0,4]上是减函数,在[4,+∞)上是增函数,求b的值.
(2)设常数c∈[1,4],求函数f(x)=x+(1≤x≤2)的最大值和最小值;
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com