22.设函数f(x)的定义域为R.对于任意实数x.y.总有f.且当x>0时.0<f(x)<1. 证明:当x<0时.f(x)>1, 在R上单调递减,·f}.N={y|f(ax2+x+1-y)=1.x∈R}.且M∩N≠φ.求a的取值范围. 查看更多

 

题目列表(包括答案和解析)

设函数f(x)的定义域为R,对于任意实数x,y,总有f(x+y)=f(x)f(y),且当x>0时,0<f(x)<1.

(Ⅰ)求f(0)的值;

(Ⅱ)确定f(x)的单调区间;

(Ⅲ)若M={y|f(y)·f(1-a)≥f(1)},N={y|f(ax2+x+1-y)=1,x∈R},且M∩N≠,求a的取值范围.·

查看答案和解析>>

设函数f(x)的定义域为R,对于任意的实数x、y都有f(x+y)=f(x)+f(y),又当x>0时,f(x)<0,且f(2)=-1.

(1)求证:f(x)为奇函数;

(2)试问函数f(x)在区间[-6,6]上是否存在最大值与最小值?若存在,求出最大值、最小值;若不存在,请说明理由.

查看答案和解析>>

设函数f(x)的定义域为R,对于任意实数x,y,总有f(x+y)=f(x)f(y),且当x>0时,0<f(x)<1.

(Ⅰ)求f(0)的值;

(Ⅱ)确定f(x)的单调区间;

(Ⅲ)若M={y|f(y)·f(1-a)≥f(1)},N={y|f(ax2+x+1-y)=1,x∈R},且M∩N≠,求a的取值范围.

查看答案和解析>>

设函数f(x)的定义域为R,若存在常数M>0,使得|f(x)|≤M|x|对一切实数x均成立,则称f(x)为F函数,给出下列函数:

①f(x)=0;     ②f(x)=x2;     ③f(x)=(sinx+cosx);    ④f(x)=

 

⑤f(x)是定义在R上的奇函数,且对于任意实数x1,x2,均有|f(x1)-f(x2)|≤2|x1-x2|。

则其中是F函数的序号是___________________

 

查看答案和解析>>

设函数f(x)的定义域为R,若存在常数M>0,使得|f(x)|≤M|x|对一切实数x均成立,则称f(x)为F函数,给出下列函数:
①f(x)=0;    ②f(x)=x2;    ③f(x)=(sinx+cosx);   ④f(x)=
⑤f(x)是定义在R上的奇函数,且对于任意实数x1,x2,均有|f(x1)-f(x2)|≤2|x1-x2|。
则其中是F函数的序号是___________________

查看答案和解析>>


同步练习册答案