21. 已知函数 直线l : . (1) 求证: 直线l与函数的图像不相切; (2) 闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛顐f礀绾惧鏌曟繛鐐珔缁炬儳鐏濋埞鎴︽偐瀹曞浂鏆¢梺鎼炲€曢悧蹇涘箟閹间焦鍋嬮柛顐g箘閻熴劑姊虹紒妯虹瑨闁诲繑宀告俊鐢稿礋椤栨氨顔婇梺瑙勬儗閸ㄩ亶寮ィ鍐╃厽閹兼番鍨婚崯鏌ユ煙閸戙倖瀚�查看更多

 

题目列表(包括答案和解析)

.(本小题满分14分)已知函数f (x)=lnxg(x)=ex
( I)若函数φ (x) = f (x)-,求函数φ (x)的单调区间;
(Ⅱ)设直线l为函数的图象上一点A(x0f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.

查看答案和解析>>

(本小题满分14分)在周长为定值的中,已知,动点的运动轨迹为曲线G,且当动点运动时,有最小值.

(1)以所在直线为轴,线段的中垂线为轴建立直角坐标系,求曲线G的方程.

(2)过点(m,0)作圆x2+y2=1的切线l交曲线G于M,N两点.将线段MN的长|MN|表示为m的函数,并求|MN|的最大值.

 

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵M=
01
10
,N=
0-1
10

(Ⅰ)求矩阵NN;
(Ⅱ)若点P(0,1)在矩阵M对应的线性变换下得到点P′,求P′的坐标.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线l的参数方程是
x=t
y=2t+1
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的极坐标方程是ρ=2cosθ(Ⅰ)在直角坐标系xOy中,求圆C的直角坐标方程
(Ⅱ)求圆心C到直线l的距离.
(3)选修4-5:不等式选讲
已知函数f(x)=|x-1|
(Ⅰ)解不等式f(x)>2;
(Ⅱ)求函数y=f(-x)+f(x+5)的最小值.

查看答案和解析>>

本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分。如果多做,则按所做的前两题记分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。
(1)(本小题满分7分)选修4-2:矩阵与变换
已知矩阵M=,N=,且MN=
(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换作用下的像的方程。
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线L的参数方程为 (t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为=2sin
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线L交于点A,B。若点P的坐标为(3,),求∣PA∣+∣PB∣。
(3)(本小题满分7分)选修4-5:不等式选讲
已知函数f(x)= ∣x-a∣.
(Ⅰ)若不等式f(x) 3的解集为,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围。

查看答案和解析>>


同步练习册答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�