7.设f (x)的定义域为R且存在反函数.若f 与互为反函数.且已知存在.则)等于 A.1 B. C.2 D. 查看更多

 

题目列表(包括答案和解析)

设函数f(x)的定义域为D,若存在x0∈D,使得y0=f(x0)=x0,则称以(x0,y0)为坐标的点为函数图象上的不动点.

(1)若函数f(x)=的图象上有两个关于原点对称的不动点,求a、b满足的条件;

(2)在(1)的条件下,若a=8,记函数f(x)图象上的两个不动点分别为A、A′,P为函数f(x)的图象上的另一点,且其纵坐标yP>3,求点P到直线AA′距离的最小值及取得最小值时点P的坐标.

(3)命题“若定义在R上的奇函数f(x)的图象上存在有限个不动点,则不动点有奇数个”是否正确?若正确,试给予证明,并举出一例;若不正确,试举一反例说明.

查看答案和解析>>

设定义域为R的函数y=f(x),y=g(x)均存在反函数,并且函数f(x-1)与g-1(x-2)的图像关于直线y=x对称,若g(5)=2005,则f(4)=


  1. A.
    2005
  2. B.
    2006
  3. C.
    2007
  4. D.
    2008

查看答案和解析>>

设定义域为R的函数y=f(x),y=g(x)均存在反函数,并且函数f(x-1)与g-1(x-2)的图像关于直线y=x对称,若g(5)=2005,则f(4)=

[  ]

A.2005

B.2006

C.2007

D.2008

查看答案和解析>>

设函数f ( x )的定义域、值域均为R,f ( x ) 反函数为f1 ( x ),且对任意实数x,均有f ( x ) + f1 ( x )<。定义数列{an} : a0 = 8 , a1 = 10 , an = f (an1 ) , n = 1, 2 , … .

(1)求证:an+1 + an1an ( n = 1 , 2 , … ) ;

(2)设求证:

(3)是否存在常数AB,同时满足;

①当n = 0 及n = 1 时,有an =成立;

②当n = 2 , 3, … 时,有an成立。

 如果存在满足上述条件的实数A、B的值;如果不存在,证明你的结论。

查看答案和解析>>

设函数f(x)的定义域、值域均为R,f(x)的反函数为f-1(x),且对任意实数x,均有f(x)+f-1(x)<x.定义数列{aN}:a0=8,a1=10,aN=f(an-1),N=1,2….

(1)求证:an+1 +an-1aN(N=1,2…).

(2)设bN=an+1-2aN,N=0,1,2,….求证: bN<(-6)()n(NN*).

(3)是否存在常数AB,同时满足:

①当N=0及N=1时,有an=成立;     

②当N=2,3…时,有an成立.

如果存在满足上述条件的实数AB,求出AB的值;如果不存在,证明你的结论.

查看答案和解析>>


同步练习册答案